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Motivation: Classifying Spaces

• Topological features
• Combinatorial 

invariants

1850s-
1900s

Fig 1. A hollow sphere with
surface S and specified point v.

Examples:
Path-connected, compact, Hausdorff, second 
countable, locally Euclidean, simply connected, etc.
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Motivation: Classifying Spaces

• Algebraic invariants
• Functorial invariants

1920s-
present

𝐶Δ 𝑆2 = ⋯⟶ 0⟶ 0⟶ ℤ𝑆 ⟶ 0⟶ ℤ𝑣

Simplicial-chain for 𝑆2: [1]

Fig 1. A hollow sphere with
surface S and specified point v.
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Categories and Functors

Defn: Categories [2]
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Categories and Functors

Defn: Categories [2] Defn: Functor [2]



Naturality
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Question: How do we compare functors?



Naturality
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Question: How do we compare functors?

What should a map of functors, 
𝛼: 𝐹 ⇒ 𝐺 do?

1) Functors preserve 
commutative diagrams 

2) Natural transformations 
should relate such 
commutative diagrams
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Polynomial 
Approximations

Goal: How can we simplify and study 
functors of the form 𝐹: ℬ → 𝐶ℎ(𝐴𝑏)?
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Polynomial 
Approximations

Goal: How can we simplify and study 
functors of the form 𝐹: ℬ → 𝐶ℎ(𝐴𝑏)?
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Question: What do we do for functions 𝑓:ℝ → ℝ?

Fig 2.a Exponential function



Polynomial 
Approximations
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Question: What do we do for functions 𝑓:ℝ → ℝ?

Fig 2.b 𝑒𝑥 to 0th-degree

Goal: How can we simplify and study 
functors of the form 𝐹: ℬ → 𝐶ℎ(𝐴𝑏)?



Polynomial 
Approximations

Goal: How can we simplify and study 
functors of the form 𝐹: ℬ → 𝐶ℎ(𝐴𝑏)?
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Question: What do we do for functions 𝑓:ℝ → ℝ?

Fig 2.c 𝑒𝑥 to 1st-degree



Polynomial 
Approximations

Goal: How can we simplify and study 
functors of the form 𝐹: ℬ → 𝐶ℎ(𝐴𝑏)?
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Question: What do we do for functions 𝑓:ℝ → ℝ?

Fig 2.d 𝑒𝑥 to 2nd-degree



Polynomial 
Approximations

Goal: How can we simplify and study 
functors of the form 𝐹: ℬ → 𝐶ℎ(𝐴𝑏)?
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Question: What do we do for functions 𝑓:ℝ → ℝ?

Fig 2.e 𝑒𝑥 to 3rd-degree



Polynomial 
Approximations
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Idea: We want to study the functor 𝐹: ℬ → 𝐶ℎ 𝐴𝑏 a sequence of simpler 
functors 𝑃𝑛 𝐹 : ℬ → 𝐶ℎ 𝐴𝑏 , 𝑛 ≥ 0, which approximate 𝐹 in a universal, 
but homotopical, fashion. [3,4]



How do we 
construct polynomial 

approximations 
𝑃𝑛(𝐹)?
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Cross Effects: Measuring Defects
Polynomial Defects:

Fig 3. Cubic and linear 
function
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Remark: Eilenberg and MacLane in [1] generalized cross-effects to 
functors valued in categories with direct sums, 𝐹: ℬ → 𝒜:
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Polynomial Defects:

Cross Effects: Measuring Defects

Fig 3. Cubic and linear 
function



Affine Example:

Example: “f(x) = x + a”
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Construction:
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(1)



Construction:
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(1)

(2)



Construction:
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(1)

(2)

(3)



Affine Example:
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Example: “f(x) = x + a”



Universality
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Slogan:



Universality
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Slogan: 

Thm: Universal Degree n Approximation



Algebraic Invariants

Powerful tool for classifying spaces, but rich and complicated

Polynomial Approximation

Provides a Taylor series-like approach to studying algebraic invariants

Key Takeaways:

Naturality

Improves coherency of universal homotopies with respect to 
commutative diagrams and allows for extensions to        
infinity-categories17



CREDITS: This presentation template was created by Slidesgo, and 
includes icons by Flaticon, and infographics & images by Freepik

Thank you!
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http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr


References:
[1] S. Eilenberg and S. MacLane. “On the Groups 𝐻(Π, 𝑛),II: Methods of Computation”. In: Annals of 
Mathematics 60.1 (1954), pp. 49-139.

[2] E. Riehl. Category Theory in Context. Aurora: Dover Modern Math Originals. Dover Publications, 
2017. 

[3] B. Johnson and R. McCarthy.”Deriving calculus with cotriples”. In: Transactions of the American
Mathematical Society 356.2 (2004), pp. 757-803.

[4] T. G. Goodwillie, “Calculus III: Taylor Series”. In: Geometry & Topology  7 (2003), pp. 645-711.

[5] A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[6] C. A. Weibel. “CHAPTER 28 – History of Homological Algebra”. In: History of Topology. Ed. By I. 
James. Amsterdam: North-Holland, 1999, pp. 797-836.

19


	Slide 1: Naturality and a Universal Property for Polynomial Functors
	Slide 2: TABLE OF CONTENTS
	Slide 3: Motivation: Classifying Spaces
	Slide 4: Motivation: Classifying Spaces
	Slide 5: Categories and Functors
	Slide 6: Categories and Functors
	Slide 7: Naturality
	Slide 8: Naturality
	Slide 9: Naturality
	Slide 10: Polynomial Approximations
	Slide 11: Polynomial Approximations
	Slide 12: Polynomial Approximations
	Slide 13: Polynomial Approximations
	Slide 14: Polynomial Approximations
	Slide 15: Polynomial Approximations
	Slide 16: Polynomial Approximations
	Slide 17: How do we construct polynomial approximations cap P sub n , open paren cap F close paren ?
	Slide 18: Cross Effects: Measuring Defects
	Slide 19
	Slide 20: Affine Example:
	Slide 21: Construction:
	Slide 22: Construction:
	Slide 23: Construction:
	Slide 24: Affine Example:
	Slide 25: Universality
	Slide 26: Universality
	Slide 27: Algebraic Invariants
	Slide 28: Thank you!
	Slide 29: References:

