A Geometric Algorithm for Computing Zelevinsky Standard Representations

E/Ea Thompson¹ (they/them)

¹Faculty of Science University of Calgary

CMS Presentation

1/21

- Notation for pKLH
- Ø Moduli spaces of Langlands parameters: Vogan varieties
- The algorithm
- Otable example
- 6 Future work

∃ >

E.T. 2023

- F/\mathbb{Q}_p denotes a p-adic field.
- $G = \mathbf{GL}_n(F)$ and $\widehat{G} = \mathbf{GL}_n(\mathbb{C})$.
- A langlands parameter $\phi: W_F \times SL_2(\mathbb{C}) \to \widehat{G}$ is an admissible representation.
- $\lambda := \lambda_{\phi} : W_F \to \widehat{G}$ defined by

$$\lambda(w) = \phi\left(w, \operatorname{diag}\left(|w|^{1/2}, |w|^{-1/2}\right)\right)$$

is the **infinitesimal parameter** associated with ϕ .

¹For more details see (Cunningham et al., 2022; Cunningham and Ray, 2023) = -9

- F/\mathbb{Q}_p denotes a *p*-adic field.
- $G = \mathbf{GL}_n(F)$ and $\widehat{G} = \mathbf{GL}_n(\mathbb{C})$.
- A langlands parameter $\phi: W_F \times SL_2(\mathbb{C}) \to \widehat{G}$ is an admissible representation.
- $\lambda := \lambda_{\phi} : W_F \to \widehat{G}$ defined by

$$\lambda(w) = \phi\left(w, \operatorname{diag}\left(|w|^{1/2}, |w|^{-1/2}\right)\right)$$

is the **infinitesimal parameter** associated with ϕ .

¹For more details see (Cunningham et al., 2022; Cunningham and Ray, 2023) = -9

- F/\mathbb{Q}_p denotes a *p*-adic field.
- $G = \mathbf{GL}_n(F)$ and $\widehat{G} = \mathbf{GL}_n(\mathbb{C})$.
- A langlands parameter $\phi: W_F \times SL_2(\mathbb{C}) \to \widehat{G}$ is an admissible representation.
- $\lambda := \lambda_{\phi} : W_F \to \widehat{G}$ defined by

$$\lambda(w) = \phi\left(w, \operatorname{diag}\left(|w|^{1/2}, |w|^{-1/2}\right)\right)$$

¹For more details see (Cunningham et al., 2022; Cunningham and Ray, 2023) 3/21

- F/\mathbb{Q}_p denotes a *p*-adic field.
- $G = \mathbf{GL}_n(F)$ and $\widehat{G} = \mathbf{GL}_n(\mathbb{C})$.
- A langlands parameter $\phi: W_F \times SL_2(\mathbb{C}) \to \widehat{G}$ is an admissible representation.

•
$$\lambda := \lambda_{\phi} : W_F \to \widehat{G}$$
 defined by

$$\lambda(w) = \phi\left(w, \operatorname{diag}\left(|w|^{1/2}, |w|^{-1/2}\right)\right)$$

is the **infinitesimal parameter** associated with ϕ .

 ¹For more details see (Cunningham et al., 2022; Cunningham and Ray, 2023) =
 Social Sector
 E Ea (UofC)
 Geometric Algorithm
 E.T. 2023
 3/21

- F/\mathbb{Q}_p denotes a *p*-adic field.
- $G = \mathbf{GL}_n(F)$ and $\widehat{G} = \mathbf{GL}_n(\mathbb{C})$.
- A langlands parameter $\phi: W_F \times SL_2(\mathbb{C}) \to \widehat{G}$ is an admissible representation.

•
$$\lambda := \lambda_{\phi} : W_F \to \widehat{G}$$
 defined by

$$\lambda(w) = \phi\left(w, \operatorname{diag}\left(|w|^{1/2}, |w|^{-1/2}\right)\right)$$

is the **infinitesimal parameter** associated with ϕ .

Defn: Cuspidal Support Category

 $\operatorname{Rep}_\lambda(G)$ denotes the category of smooth representations of G with cuspidal support cut out by the Langlands correspondence applied to \widehat{G} -conjugacy classes of $\lambda.^1$

¹For more details see (Cunningham et al., 2022; Cunningham and Ray, 2023) E Ea (UofC) Geometric Algorithm E.T. 2023 3/21

Standard Reps and pKLH

- For $\pi \in \operatorname{Rep}_{\lambda}(G)$ irreducible, $\Delta(\pi)$ denotes the Zelevinsky standard representation with unique irreducible quotient π .²
- \bullet We are interested in determining the multiplicities of irreducibles in Jordan Hölder series of $\Delta(\pi)$

 $J(\Delta(\pi)) = \{m(\pi'; \pi)\pi' : \pi' \in \operatorname{Rep}_{\lambda}(G)^{irr}, m(\pi'; \pi) = \operatorname{multiplicity}\}$

²For more details see (Bernstein and Zelevinsky, 1977; Zelevinsky, 1980) ³For more details see (Achar, 2021; Cunningham and Ray, 2023)

E Ea (UofC)

Geometric Algorithm

E.T. 2023

- For $\pi \in \operatorname{Rep}_{\lambda}(G)$ irreducible, $\Delta(\pi)$ denotes the Zelevinsky standard representation with unique irreducible quotient π .²
- We are interested in determining the multiplicities of irreducibles in Jordan Hölder series of $\Delta(\pi)$

$$J(\Delta(\pi)) = \{m(\pi'; \pi)\pi' : \pi' \in \mathsf{Rep}_{\lambda}(G)^{irr}, m(\pi'; \pi) = \mathsf{multiplicity}\}$$

 2 For more details see (Bernstein and Zelevinsky, 1977; Zelevinsky, 1980) 3 For more details see (Achar, 2021; Cunningham and Ray, 2023) < \equiv > < \equiv

E Ea (UofC)

Geometric Algorithm

- For $\pi \in \operatorname{Rep}_{\lambda}(G)$ irreducible, $\Delta(\pi)$ denotes the Zelevinsky standard representation with unique irreducible quotient π .²
- \bullet We are interested in determining the multiplicities of irreducibles in Jordan Hölder series of $\Delta(\pi)$

$$J(\Delta(\pi)) = \{m(\pi'; \pi)\pi' : \pi' \in \operatorname{Rep}_{\lambda}(G)^{irr}, m(\pi'; \pi) = \operatorname{multiplicity}\}$$

Idea behind pKLH

If $m := (m_{i,j})_{i,j \in I}$ is the multiplicity matrix for standard representations in $\operatorname{Rep}_{\lambda}(G)$, then $m = {}^{t}m^{geo}$ for m^{geo} a matrix of simple perverse sheaf stalk dimensions.³

²For more details see (Bernstein and Zelevinsky, 1977; Zelevinsky, 1980) ³For more details see (Achar, 2021; Cunningham and Ray, 2023)

E Ea (UofC)

Geometric Algorithm

E.T. 2023

Geometry: Moduli Space of Langlands Parameters

Vogan Variety

The Vogan Variety associated with λ is defined as

$$V_{\lambda} := \{ M \in \operatorname{Lie} Z_{\widehat{G}}(\lambda(I_F)) : \lambda(\mathfrak{fr}) M \lambda(\mathfrak{fr})^{-1} = q_F M \}$$

where $q_F = |k(\mathcal{O}_F)|$ and $I_F \leq W_F$ is the inertia subgroup.⁴

Geometry: Moduli Space of Langlands Parameters

Vogan Variety

The Vogan Variety associated with λ is defined as

$$V_{\lambda} := \{ M \in \text{Lie } Z_{\widehat{G}}(\lambda(I_F)) : \lambda(\mathfrak{fr}) M \lambda(\mathfrak{fr})^{-1} = q_F M \}$$

where $q_F = |k(\mathcal{O}_F)|$ and $I_F \leq W_F$ is the inertia subgroup.⁴

Rmk:

In the case of $G = GL_n(F)$, an infinitesimal parameter λ is characterized by the image of frobenius which is a semi-simple element of the form

$$\lambda(\mathfrak{fr}) = \mathsf{diag}(q_F^{e_0},...,q_F^{e_{n-1}})$$

for $e_0 \geq \cdots \geq e_{n-1} \in \frac{1}{2}\mathbb{Z}$ and a specific choice of basis.

¹Further details in (Cunningham et al., 2022, Sec. 4.2) □ > (♂) (Cunningham et al., 2022, Sec. 4.2)

E Ea (UofC)

E.T. 2023

Conjugation Action and Toy Example

Rmk:

 $H_{\lambda} := Z_{\widehat{G}}(\lambda(W_F))$ acts naturally by conjugation on V_{λ} .

3

6/21

イロト 不得下 イヨト イヨト

Rmk:

 $H_{\lambda} := Z_{\widehat{G}}(\lambda(W_F))$ acts naturally by conjugation on V_{λ} .

Toy Example: Take
$$G(F) = \mathbf{GL}_2(F)$$
, $\widehat{G} = \mathbf{GL}_2(\mathbb{C})$, and $\lambda(\mathfrak{fr}) = \operatorname{diag}\left(q_F^{1/2}, q_F^{-1/2}\right)$. Then

$$V_{\lambda} = \left\{ \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} \in M_{2,2}(\mathbb{C}) : x \in \mathbb{C} \right\}, \quad H_{\lambda} = \left\{ \begin{pmatrix} t_1 & 0 \\ 0 & t_2 \end{pmatrix} \in \mathbf{GL}_2(\mathbb{C}) : t_1, t_2 \in \mathbb{C}^{\times} \right\}$$

 V_{λ} has two orbits under the action by H_{λ} :

$$C_0 = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}, \ C_1 = \left\{ \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} \in M_{2,2}(\mathbb{C}) : x \in \mathbb{C}^{\times} \right\}$$

E Ea (UofC)

E.T. 2023

Perverse sheaves

 $\bullet~ {\rm Per}_{H_\lambda}(V_\lambda)$ denotes the category of equivariant perverse sheaves on $V_\lambda.^5$

⁵For more details see (Cunningham and Ray, 2023; Achar, 2021; Cunningham et al., 2022). E Ea (UofC) Geometric Algorithm E.T. 2023 7/2

Perverse sheaves

• ${\rm Per}_{H_\lambda}(V_\lambda)$ denotes the category of equivariant perverse sheaves on $V_\lambda.^5$

Thm: Simples for $GL_n(F)$

The simple objects of $\operatorname{Per}_{H_{\lambda}}(V_{\lambda})$ for $G = \operatorname{GL}_n(F)$ are of the form

$$\{\mathcal{IC}(\mathbb{1}_C): C \in \mathsf{Orbs}_{H_\lambda}(V_\lambda)\}\tag{1}$$

⁵For more details see (Cunningham and Ray, 2023; Achar, 2021; Cunningham et al., 2022). E Ea (UofC) Geometric Algorithm E.T. 2023 7/21

Perverse sheaves

• ${\rm Per}_{H_\lambda}(V_\lambda)$ denotes the category of equivariant perverse sheaves on $V_\lambda.^5$

Thm: Simples for $GL_n(F)$

The simple objects of $\operatorname{Per}_{H_{\lambda}}(V_{\lambda})$ for $G = \operatorname{GL}_n(F)$ are of the form

$$\{\mathcal{IC}(\mathbb{1}_C): C \in \mathsf{Orbs}_{H_\lambda}(V_\lambda)\}\tag{1}$$

• For $C, C' \in \operatorname{Orbs}_{H_{\lambda}}(V_{\lambda})$,

$$m_{C,C'}^{geo} = (-1)^{\dim C} \sum_{n \in \mathbb{Z}} (-1)^n \dim \mathcal{H}^n(\mathcal{IC}(\mathbb{1}_C))_{x_{C'}}$$

for $x_{C'} \in C'$.

E Ea (UofC)

Image: Image:

э

• For $C, C' \in \operatorname{Orbs}_{H_{\lambda}}(V_{\lambda})$,

$$m_{C,C'}^{geo} = (-1)^{\dim C} \sum_{n \in \mathbb{Z}} (-1)^n \dim \mathcal{H}^n(\mathcal{IC}(\mathbb{1}_C))_{x_{C'}}$$

for $x_{C'} \in C'$.

New/Equivalent Goal

Determine the chain of vector spaces $\mathcal{H}^n(\mathcal{IC}(\mathbb{1}_C))_{x_{C'}}$ for all H_{λ} -orbits C, C' of V_{λ} .

E.T. 2023

We define a partial ordering on $H_\lambda\text{-orbits}$ in V_λ by

 $C \leq C' \iff C \subseteq \overline{C'}$

- $1.\,$ Find and store orbits using Zelevinsky multisegment machinery. 6
- 2. Proceed inductively up the poset tree layer by layer.

E Ea (UofC)

We define a partial ordering on $H_{\lambda}\text{-orbits}$ in V_{λ} by

 $C \leq C' \iff C \subseteq \overline{C'}$

- 1. Find and store orbits using Zelevinsky multisegment machinery.⁶
- 2. Proceed inductively up the poset tree layer by layer.

E Ea (UofC)

We define a partial ordering on H_{λ} -orbits in V_{λ} by

$$C \leq C' \iff C \subseteq \overline{C'}$$

- 1. Find and store orbits using Zelevinsky multisegment machinery.⁶
- 2. Proceed inductively up the poset tree layer by layer.

 6 For further details see (Zelevinskii, 1981; Bernstein and Zelevinsky, 1977; Zelevinsky, 1980) $(\Box \rightarrow \langle \Box \rangle) \in \mathbb{R}^{3} \land (\Box \rightarrow \langle \Box \rangle)$

E Ea (UofC)

Geometric Algorithm

We define a partial ordering on H_{λ} -orbits in V_{λ} by

$$C \leq C' \iff C \subseteq \overline{C'}$$

- 1. Find and store orbits using Zelevinsky multisegment machinery.⁶
- 2. Proceed inductively up the poset tree layer by layer.

 6 For further details see (Zelevinskii, 1981; Bernstein and Zelevinsky, 1977; Zelevinsky, 1980) $(\Box \rightarrow \langle \Box \rangle \land (\Xi \rightarrow \langle \Xi \rangle))))$

E Ea (UofC)

Geometric Algorithm

E.T. 2023 9 / 21

We define a partial ordering on H_{λ} -orbits in V_{λ} by

$$C \leq C' \iff C \subseteq \overline{C'}$$

- 1. Find and store orbits using Zelevinsky multisegment machinery.⁶
- 2. Proceed inductively up the poset tree layer by layer.

⁶For further details see (Zelevinskii, 1981; Bernstein and Zelevinsky, 1977; Zelevinsky, 1980)

E Ea (UofC)

Geometric Algorithm

E.T. 2023 9 / 21

We define a partial ordering on H_{λ} -orbits in V_{λ} by

$$C \leq C' \iff C \subseteq \overline{C'}$$

- 1. Find and store orbits using Zelevinsky multisegment machinery.⁶
- 2. Proceed inductively up the poset tree layer by layer.

⁶For further details see (Zelevinskii, 1981; Bernstein and Zelevinsky, 1977; Zelevinsky, 1980)

E E .	(11-50
E Ea	

General Result⁷

If C, C' are H_{λ} orbits of V_{λ} , then

- $IC(\mathbb{1}_C)_{x_C} = \mathbb{C}[\dim C] \text{ for } x_C \in C$
- $\ \, {\mathcal {IC}}(\mathbb{1}_C)_{x_{C'}}=0 \ \text{for} \ x_{C'}\in C' \ \text{if} \ C' \nleq C$

⁷For further details see (Achar, 2021) ⁸For further details see (Achar, 2021)

E Ea (UofC)

Geometric Algorithm

General Result⁷

If C, C' are H_{λ} orbits of V_{λ} , then

- $IC(\mathbb{1}_C)_{x_C} = \mathbb{C}[\dim C] \text{ for } x_C \in C$
- $\ \ \, \textbf{2}\mathcal{C}(\mathbbm{1}_C)_{x_{C'}}=0 \ \text{for} \ x_{C'}\in C' \ \text{if} \ C' \nleq C$

Smooth Closure⁸

If C, C' are H_{λ} orbits of V_{λ} with \overline{C} smooth and $C' \leq C$, then

 $\mathcal{IC}(\mathbb{1}_C)_{x_{C'}} = \mathbb{C}[\dim C]$

⁷For further details see (Achar, 2021) ⁸For further details see (Achar, 2021)

E Ea (UofC)

Geometric Algorithm

E.T. 2023

10 / 21

The Algorithm: Singular Closures

 ${\, \bullet \,}$ We wish to find a smooth space \widetilde{C} with a proper birational map

$$\pi: \widetilde{C} \to \overline{C}$$

• This problem has a known solution in the case of H_{λ} orbits in V_{λ} for $G = \mathrm{GL}_n.^9$

⁹For further details see (Abeasis, Del Fra, and Kraft, 1981; Reinekez2001) - 🚊 🤊 🔍

11/21

The Algorithm: Singular Closures

 \bullet We wish to find a smooth space \widetilde{C} with a proper birational map

$$\pi: \widetilde{C} \to \overline{C}$$

• This problem has a known solution in the case of H_{λ} orbits in V_{λ} for $G = \mathrm{GL}_{n}.^{9}$

Figure: Resolution of Singularities through blow-up (Hatcher, Algebraic Geometry)

⁹For further details see (Abeasis, Del Fra, and Kraft, 1981; Reineke≡2001) → 📑 🗠 २०

E Ea (UofC) Geometric Algorithm	E.T. 2023	11 / 2
---------------------------------	-----------	--------

The Algorithm: Decomposition Theorem

Decomposition Theorem

If C is an H_{λ} orbit in V_{λ} and $\pi: \widetilde{C} \to \overline{C}$ is a resolution of singularities, then $r(\pi)$

$$R\pi_{!}\mathcal{IC}(\mathbb{1}_{\widetilde{C}_{sm}}) \cong \bigoplus_{i=-r(\pi)}^{\bullet} \mathcal{H}^{i}(R\pi_{!}\mathcal{IC}(\mathbb{1}_{\widetilde{C}_{sm}}))[-i]$$
$$\cong \bigoplus_{i=-r(\pi)}^{r(\pi)} \bigoplus_{C' \leq C} m_{i}(C';C)\mathcal{IC}(\mathbb{1}_{C'})[-i]$$

where $r(\pi) = \max_{C' < C} (\dim C' + 2 \dim \pi^{-1}(\{x_{C'}\}) - \dim C).^{10}$

¹⁰For further details see (Cataldo and Migliorini, 2007)
 ¹¹For further details see (Achar, 2021)

or further details see (Ac

E Ea (UofC)

Geometric Algorithm

Decomposition Theorem

R

If C is an H_{λ} orbit in V_{λ} and $\pi: \widetilde{C} \to \overline{C}$ is a resolution of singularities, then $r(\pi)$

$$\mathfrak{LC}(\mathbb{1}_{\widetilde{C}_{sm}}) \cong \bigoplus_{i=-r(\pi)}^{\mathfrak{p}} \mathcal{H}^{i}(R\pi_{!}\mathcal{IC}(\mathbb{1}_{\widetilde{C}_{sm}}))[-i]$$
$$\cong \bigoplus_{i=-r(\pi)}^{r(\pi)} \bigoplus_{C' \leq C} m_{i}(C';C)\mathcal{IC}(\mathbb{1}_{C'})[-i]$$

where $r(\pi) = \max_{C' < C} (\dim C' + 2 \dim \pi^{-1}(\{x_{C'}\}) - \dim C).^{10}$

• For $x \in \overline{C}$,

$$(R\pi_! \mathcal{IC}(\mathbb{1}_{\widetilde{C}_{sm}}))_x \cong H^{\bullet}(\pi^{-1}(\{x\}))[\dim \widetilde{C}]^{11}$$

¹⁰For further details see (Cataldo and Migliorini, 2007)
 ¹¹For further details see (Achar, 2021)

E Ea (UofC)

E Ea	(UofC

	(11 60)
- F > 1	I lot(
	UUUIC.

	(11 60)
- F > 1	I lot(
	UUUIC.

• Restricting to C',

$$\mathcal{IC}(\mathbb{1}_C)_{x_{C'}} \oplus \bigoplus_{i=-r(\pi)}^{r(\pi)} m_i(C';C)\mathcal{IC}(\mathbb{1}_{C'})_{x_{C'}}[-i]$$
$$\cong \mathcal{IC}(\mathbb{1}_C)_{x_{C'}} \oplus \bigoplus_{i=-r(\pi)}^{r(\pi)} m_i(C';C)\mathbb{C}[\dim C'-i]$$

equals $H^{\bullet}(\pi^{-1}(\{x_{C'}\}))[\dim C]$ after removing occurrences of $m_i(C''; C)\mathcal{IC}(\mathbb{1}_{C''})_{x_{C'}}[-i]$ for C' < C'' < C.

E Ea (UofC)

- We set $m_i(C'; C)$ = the dimension of the vector space shifted by $\dim C' i$, for $i \in [0, r(\pi)]$.
- By Poincaré-Verdier Duality we can then determine $m_{-i}(C';C) = m_i(C';C)$ for each $i.^{12}$

¹²For further details see (Cataldo and Migliorini, 2007)
 ¹³For further details see (Achar, 2021, Lem 3.3.11)

E Ea (UofC)

Geometric Algorithm

E.T. 2023

14 / 21

< □ > < 同 > < 回

- We set $m_i(C'; C)$ = the dimension of the vector space shifted by $\dim C' i$, for $i \in [0, r(\pi)]$.
- By Poincaré-Verdier Duality we can then determine $m_{-i}(C';C) = m_i(C';C)$ for each $i.^{12}$

¹²For further details see (Cataldo and Migliorini, 2007)
 ¹³For further details see (Achar, 2021, Lem 3.3.11)

E Ea (UofC)

Geometric Algorithm

- We set $m_i(C'; C)$ = the dimension of the vector space shifted by $\dim C' i$, for $i \in [0, r(\pi)]$.
- By Poincaré-Verdier Duality we can then determine $m_{-i}(C';C) = m_i(C';C)$ for each $i.^{12}$

Rmk: Support

The non-trivial vector spaces for $\mathcal{H}^n(\mathcal{IC}(\mathbb{1}_C))_{x_{C'}}$ are located in degrees n (or shifts -n) such that $\dim C' \leq -n \leq \dim C$, with equality $-n = \dim C'$ if and only if C' = C.¹³

¹²For further details see (Cataldo and Migliorini, 2007)

¹³For further details see (Achar, 2021, Lem 3.3.11)

E Ea (UofC)

Geometric Algorithm

(4) 御下 (4) 臣下 (4) 臣下 (4) 臣

Question:

Can we use this to determine all IC's yet?

• Not in general due to cohomology computations.

- (A)

- E

э

15 / 21

Question:

Can we use this to determine all IC's yet?

• Not in general due to cohomology computations.

ㅋ> ㅋ

Question:

Can we use this to determine all IC's yet?

• Not in general due to cohomology computations.

Known Cases:

$$\begin{split} &\text{I1. } \lambda(\mathfrak{fr}) = \text{diag}\left(q_F^{(n-1)/2}, q_F^{(n-3)/2}, ..., q_F^{-(n-1)/2}\right), \, V_\lambda \cong \mathbb{C}^n \\ &\text{I2. } \lambda(\mathfrak{fr}) = \text{diag}\left(\underbrace{q_F^{1/2}, ..., q_F^{1/2}}_{\ell}, \underbrace{q_F^{-1/2}, ..., q_F^{-1/2}}_{k}\right), \, V_\lambda \cong M_{\ell,k}(\mathbb{C}) \\ &\text{I3. } \lambda(\mathfrak{fr}) = \text{diag}\left(q_F^1, \underbrace{q_F^0, ..., q_F^0}_{\ell}, \underbrace{q_F^{-1}, ..., q_F^{-1}}_{k}\right), \, V_\lambda \cong M_{1,\ell}(\mathbb{C}) \times M_{\ell,k}(\mathbb{C}) \end{split}$$

E Ea (UofC)

臣

15 / 21

Example of a Known Case

In	the case	of $G =$	$GL_5(F)$,	, with $\lambda(\mathfrak{fr})$ =	= diag $(q_F^1,$	$q_{F}^{0}, q_{F}^{0}, q_{F}^{0},$	$q_F^{-1}, q_F^{-1}),$	
----	----------	----------	-------------	-----------------------------------	------------------	------------------------------------	------------------------	--

				· · ·		-	
m_{geo}^{λ}	$ _{C_{000}}$	$ _{C_{010}}$	$ _{C_{100}}$	$ _{C_{110}}$	$ _{C_{111}}$	$ _{C_{200}}$	$ _{C_{211}}$
$\mathcal{IC}(\mathbb{1}_{C_{000}})$	$\mathbb{C}[0]$	0	0	0	0	0	0
$\mathcal{IC}(\mathbb{1}_{C_{010}})$	$\mathbb{C}[2]$	$\mathbb{C}[2]$	0	0	0	0	0
$\mathcal{IC}(\mathbb{1}_{C_{100}})$	$\mathbb{C}[3] \oplus \mathbb{C}[1]$	0	$\mathbb{C}[3]$	0	0	0	0
$\mathcal{IC}(\mathbb{1}_{C_{110}})$	$\mathbb{C}[4] \oplus \mathbb{C}[2]$	$\mathbb{C}[4]$	$\mathbb{C}[4]$	$\mathbb{C}[4]$	0	0	0
$\mathcal{IC}(\mathbb{1}_{C_{111}})$	$\mathbb{C}[5] \oplus \mathbb{C}[3]$	$\mathbb{C}[5] \oplus \mathbb{C}[3]$	$\mathbb{C}[5]$	$\mathbb{C}[5]$	$\mathbb{C}[5]$	0	0
$\mathcal{IC}(\mathbb{1}_{C_{200}})$	$\mathbb{C}[4]$	0	$\mathbb{C}[4]$	0	0	$\mathbb{C}[4]$	0
$\mathcal{IC}(\mathbb{1}_{C_{211}})$	$\mathbb{C}[6]$	$\mathbb{C}[6]$	$\mathbb{C}[6]$	$\mathbb{C}[6]$	$\mathbb{C}[6]$	$\mathbb{C}[6]$	$\mathbb{C}[6]$

イロト イヨト イヨト イヨト

æ

Example of a Known Case

In the case of $G = \mathsf{GL}_5(F)$, with $\lambda(\mathfrak{fr}) = \mathsf{diag}(q_F^1, q_F^0, q_F^0, q_F^{-1}, q_F^{-1})$,

m_{geo}^{λ}	$ _{C_{000}}$	$ _{C_{010}}$	$ _{C_{100}}$	$ _{C_{110}}$	$ _{C_{111}}$	$ _{C_{200}}$	$ _{C_{211}}$
$\mathcal{IC}(\mathbb{1}_{C_{000}})$	$\mathbb{C}[0]$	0	0	0	0	0	0
$\mathcal{IC}(\mathbb{1}_{C_{010}})$	$\mathbb{C}[2]$	$\mathbb{C}[2]$	0	0	0	0	0
$\mathcal{IC}(\mathbb{1}_{C_{100}})$	$\mathbb{C}[3] \oplus \mathbb{C}[1]$	0	$\mathbb{C}[3]$	0	0	0	0
$\mathcal{IC}(\mathbb{1}_{C_{110}})$	$\mathbb{C}[4] \oplus \mathbb{C}[2]$	$\mathbb{C}[4]$	$\mathbb{C}[4]$	$\mathbb{C}[4]$	0	0	0
$\mathcal{IC}(\mathbb{1}_{C_{111}})$	$\mathbb{C}[5] \oplus \mathbb{C}[3]$	$\mathbb{C}[5] \oplus \mathbb{C}[3]$	$\mathbb{C}[5]$	$\mathbb{C}[5]$	$\mathbb{C}[5]$	0	0
$\mathcal{IC}(\mathbb{1}_{C_{200}})$	$\mathbb{C}[4]$	0	$\mathbb{C}[4]$	0	0	$\mathbb{C}[4]$	0
$\mathcal{IC}(\mathbb{1}_{C_{211}})$	$\mathbb{C}[6]$	$\mathbb{C}[6]$	$\mathbb{C}[6]$	$\mathbb{C}[6]$	$\mathbb{C}[6]$	$\mathbb{C}[6]$	$\mathbb{C}[6]$

• In $\operatorname{Rep}_{\lambda}(\operatorname{GL}_5(F))$ C_{111} and C_{211} correspond to standard representations

$$\begin{split} &\Delta_{a_{111}} = I_{P_{1,3,1}}^{\mathsf{GL}_5} \left(\nu^0 \boxtimes Q \left(I_B^{\mathsf{GL}_3} \left(\nu^{-1} \boxtimes \nu^0 \boxtimes \nu^1 \right) \right) \boxtimes \nu^{-1} \right) \text{ and } \\ &\Delta_{a_{211}} = I_{P_{3,2}}^{\mathsf{GL}_5} \left(Q \left(I_B^{\mathsf{GL}_3} \left(\nu^{-1} \boxtimes \nu^0 \boxtimes \nu^1 \right) \right) \boxtimes Q \left(I_B^{\mathsf{GL}_2} \left(\nu^{-1} \boxtimes \nu^0 \right) \right) \right) \\ &\text{where } \nu = |\det \cdot|_F \text{, and the table tells us that} \end{split}$$

$$J(\Delta_{a_{111}}) = \{Q(\Delta_{a_{111}}), Q(\Delta_{a_{211}})\}$$

- Able to compute intersection cohomology complexes making up the simple perverse sheaves for a Vogan variety attached to GL_n.
- ⁽²⁾ Using the pKLH this result can be transferred back to the decompositions of standard representations of $GL_n(F)$.

- Able to compute intersection cohomology complexes making up the simple perverse sheaves for a Vogan variety attached to GL_n.
- **②** Using the pKLH this result can be transferred back to the decompositions of standard representations of $GL_n(F)$.

- Able to compute intersection cohomology complexes making up the simple perverse sheaves for a Vogan variety attached to GL_n.
- **②** Using the pKLH this result can be transferred back to the decompositions of standard representations of $GL_n(F)$.

Future Work:

- Continue expanding the algorithm for computing the structure of IC's for other infinitesimal parameters attached to GL_n.
- **(a)** Extend the algorithm to classical groups such as SO_{2n+1} and Sp_{2n} .

- Able to compute intersection cohomology complexes making up the simple perverse sheaves for a Vogan variety attached to GL_n.
- **②** Using the pKLH this result can be transferred back to the decompositions of standard representations of $GL_n(F)$.

Future Work:

- Continue expanding the algorithm for computing the structure of IC's for other infinitesimal parameters attached to GL_n.
- **2** Extend the algorithm to classical groups such as SO_{2n+1} and Sp_{2n} .

E.T. 2023

э

18 / 21

Abeasis, S., A. Del Fra, and H. Kraft (1981). "The geometry of representations of Am". In: Mathematische Annalen 256.3, pp. 401-418. ISSN: 1432-1807. DOI: 10.1007/BF01679706. URL: https://doi.org/10.1007/BF01679706. Achar, P. (2021). Perverse Sheaves and Applications to Representation Theory. Mathematical Surveys and Monographs. American Mathematical Society. ISBN: 9781470455972. Bernstein, I. N. and A. V. Zelevinsky (1977). "Induced representations of reductive p-adic groups. I". In: Annales scientifiques de l'École Normale Supérieure. 4th ser. 10.4, pp. 441-472. DOI: 10.24033/asens.1333. URL: http://www.numdam.org/articles/10.24033/asens.1333/. Cataldo, M. A. de and L. Migliorini (2007). The Decomposition Theorem and the topology of algebraic maps. DOI: 10.48550/ARXIV.0712.0349. URL: https://arxiv.org/abs/0712.0349.

E.T. 2023

Cunningham, C. and M. Ray (2022). Proof of Vogan's conjecture on Arthur packets: simple parameters of p-adic general linear groups. DOI: 10.48550/ARXIV.2206.01027. URL:

https://arxiv.org/abs/2206.01027.

- (2023). Proof of Vogan's conjecture on Arthur packets for GL_n over *p*-adic fields. arXiv: 2302.10300 [math.RT].
- Cunningham, C. et al. (2022). "Arthur packets for *p*-adic groups by way of microlocal vanishing cycles of perverse sheaves, with examples". In: *Memoirs of the American Mathematical Society* 276.1353. DOI:

10.1090/memo/1353. URL:

https://doi.org/10.1090\%2Fmemo\%2F1353.

Reineke, M. (2001). Quivers, desingularizations and canonical bases. DOI: 10.48550/ARXIV.MATH/0104284. URL: https://arxiv.org/abs/math/0104284.

E.T. 2023

- Zelevinskii, A. V. (1981). "p-adic analog of the Kazhdan-Lusztig Hypothesis". In: *Functional Analysis and Its Applications* 15.2, pp. 9–21.
- Zelevinsky, A. V. (1980). "Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n).". In: Annales scientifiques de l'École Normale Supérieure. 4th ser. 13.2, pp. 165–210. DOI: 10.24033/asens.1379. URL:
 - http://www.numdam.org/articles/10.24033/asens.1379/.