
Introduction/Motivation
These notes are for a 30~40 minute talk on cardinalities in semiadditive, along with the notion
of semiadditive height, covering topics from sections 2.1-3.2 of the paper Ambidexterity and

Height[1], which was given as part of an Ambidexterity seminar at UIUC in Fall 2025. For
notation please refer to the previous note introducing semiadditivity.

Cardinalities
Recall from last time that if a map of π-finite spaces q : A → B is C-ambidextrous for an ∞-
category C, then we obtain a norm equivalence

Nmq : q! q∗

where q! ⊣ q∗ ⊣ q∗, for q∗ : CB → C
A given by pre-composition. This norm map allows us to

define integration of families of maps:

∫
q

: MapCA(q∗X, q∗Y ) → MapCB(X, Y )

which can be given by the composite

MapCA(q∗X, q∗Y ) → MapCB(q!q
∗X, q!q

∗Y ) MapCB(q∗q∗X, q!q
∗Y ) MapCB(X, Y )

Integrating the identity morphism yields the notion of C-cardinality.

Note that for a given object X ∈ C, X X is exactly ∫A
idX.

Cardinalities and Semiadditive Height
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C-cardinality

Let C ∈ Cat∞ and let A → B be a C-ambidextrous map. We have a natural

transformation idCB idCB  given by the composition

idCB q∗q∗ q!q
∗ → idCB

For a C-ambidextrous space A, we write idC idC and call |A|C the C-cardinality of A
.
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Note: For a C-ambidextrous space A, the A-limits and A-colimits in C are canonically
isomorphic, which implies the following:

Using Fubini's theorem for iso-normed functors, we can obtain the following additivity result for
cardinalities. In the current context Fubini's Theorem for iso-normed functors says that if
A → B → C are π-finite maps of π-finite spaces such that p and q are both C-ambidextrous,
then ∫

qp
 is homotopic to the composite

MapCA(p∗q∗X, p∗q∗Y ) MapCB(q∗X, q∗Y ) MapCC (X, Y )

Intuition: This says that the cardinality of the total space A is the sum over B of the
cardinalities of the fibers Ab of q. To see how this is a consequence of Fubini we can re-write
both sides using the integral notation to give

∫
A

idA∗X ≃ ∫
B

∫
q

idq∗B∗X

We can interpret this as saying

|A × B|C = |A|C|B|C ∈ End(idC)

and

Motivating Example

Let C be a semiadditive ∞-category. For a finite set A, viewed as an 0-finite space, the
operation |A|C is simply the multiplication by the natural number which is the usual
cardinality of A.

Prop: Preservation of Limits and Colimits for Ambidextrous Spaces

Let C,D ∈ Cat∞, and let A be a C- and D-ambidextrous space. A functor F : C → D

preserves all A-limits if and only if it preserves all A-colimits. Moreover, if F  preserves all
A-(co)limits, then F(|A|C) ≃ |A|D.

p q

∫p

−→
∫q

−→

Prop: Additivity of Cardinalities

Let C ∈ Cat∞ and A → B a map of spaces. If B and q are C-ambidextrous, then A is C-
ambidextrous and for every X ∈ C,

|A|X = ∫
B

|q|B∗X

q



|A|C = ∐
a∈π0A

|Aa|C ∈ End(idC)

When C is monoidal and the tensor product preserves A-colimits in each variable, Lemma 3.3.4

of[2] implies that |A|X can be identified with |A|𝟙 ⊗ X, where 𝟙 is the monoidal unit.
Additionally, if R ∈ Alg(C), then |A|R : R → R can be identified with multiplication by the
image of |A|𝟙 ∈ π0𝟙 := π0Map(𝟙, 𝟙) under the unit map π0𝟙 → π0R := π0Map(𝟙, R), which
we also denote by |A|R.

Higher Commutative Monoids
We refer to an ∞-category as m-semiadditive if all m-finite spaces are ambidextrous. For
m = 0 we recover the ordinary notion of a semiadditive ∞-category. Note that if C ⊆ D is a full
subcategory of an m-semiadditive ∞-category, then if C is either stable under m-finite colimits
or m-finite limits, then it is stable under both, and it is m-semiadditive itself.

In the case m = −2, evaluating at pt, the unique object of Span(S (−2)finColim), gives an
equivalence CMon−2(C) ≃ C.

m-Commutative Monoids

Let −2 ≤ m < ∞. For C ∈ CatmfinLim
∞ , the ∞-category of m-commutative monoids in C

is given by

CMonm(C) := FunmfinR(Span(Smfin)
op, C)

When C = S we write CMonm := CMonm(S), and refer to its objects as m-commutative
monoids.

Explication (CMonm)

An object X ∈ CMonm consists of an underlying space X(pt), together with a collection
of coherent operations for summation of m-finite families of points in it. Indeed, for
A ∈ Smfin, we have a canonical equivalence X(A) ≃ X(pt)A. Given A → B in Smfin, the
image of A == A → B is the restriction X(pt)B → X(pt)A, while the image of
B ← A == A encodes integration along fibers X(pt)A → X(pt)B.

Question

How can we see the restriction and integration along fibers perspectives above?



Proof.
It suffices to prove that ιm preserves m-finite colimits. By the description of colimits in spans it
suffices to prove that Smfin ↪ S(m+1)fin is stable under m-finite colimits.
□

The following answers the above question:

Proof.
Taking fibers, it suffices to show that if f : A → B is an m-finite map with B an m-finite space,
then A is also m-finite. For each point b ∈ B, we have a homotopy fiber sequence
f −1(b) → A → B where f −1(b) is also m-finite, by definition of m-finite maps. Thus, looking at
the long exact sequence of homotopy groups for each a ∈ f −1(b), we see that A is also m-
truncated, has finitely many path components, and has all homotopy groups begin finite,
completing the proof.
□

Prop: Forgetful Functors between m-Commutative Monoids Cats

Let −2 ≤ m < ∞ and let C ∈ Cat(m+1)−finLim
∞ . The restriction along the inclusion functor

ιm : Span(Smfin) ↪ Span(S(m+1)fin)

induces a limit preserving functor

ι∗
m : CMonm+1(C) → CMonm(C)

Question

How can we see that Smfin has m-finite colimits? If A S is an m-finite diagram, then

colimA X ≃ colimA/X∗ ≃ A/X

How do we know that A/X is also m-finite? We know that A is m-finite and that all fibers
of the Kan fibration A/X → A are m-finite, so it is also an m-finite map. Do m-finite maps
compose?

X
−→

Prop: m-finite Maps Compose

If f : A → B and g : B → C are m-finite, then so is their composite gf.



We extend CMonm to m = ∞ by defining for C ∈ Cat∞finLim
∞  the ∞-category

CMon∞(C) := limm CMonm(C)

with limit computed in Cat∞. This is equivalent to

Fun∞finR(Span(S∞fin)
op, C)

Consequently, when C is presentable, CMonm(C) is presentable for all m, and CMon∞(C) can
then be described as a colimit of CMonm(C) in PrL:

The mapping spaces between two objects in an m-semiadditive ∞-category have a canonical
m-commutative monoid structure.

As a consequence, for each m-semiadditive ∞-category we have a unique lift of the Yoneda
embedding to a CMonm-enriched Yoneda embedding:

Lemma: CMon∞ as Colimit in Pr
L

For C ∈ PrL, the forgetful functors

ι∗
m : CMonm+1(C) → CMonm(C)

admit left adjoints, and the colimit of the sequence

C ≃ CMon−2(C) CMon−1(C) ⋯

in PrL is CMon∞(C). In particular, CMon∞(C) is presentable.

ι−1,!

−→
ι0,!

−→

Prop: Universality of CMonm(−)

Let −2 ≤ m ≤ ∞. For every C ∈ Cat⊕m
∞  and D ∈ Catmfin

∞ , post-composition with
evaluation at pt ∈ Smfin induces an equivalence of ∞-categories

Funmfin(C,CMonm(D)) ≃ Funmfin(C,D)

Corollary: CMonm-enriched Yoneda

Let −2 ≤ m ≤ ∞. For each C ∈ Cat⊕m
∞ , there is a unique fully-faithful and m-

semiadditive functor

よCMonm : C ↪ Fun(Cop,CMonm)

whose composition with the forgetful functor CMonm → S is the Yoneda embedding.



Here a functor between m-semiadditive ∞-categories is said to be m-semiadditive if it
preserves m-finite limits.

Proof.
Taking D = S in the universality of m-commutative monoids, we see that the ordinary Yoneda
embedding

よ : C ↪ Funmfin(Cop,S) ⊆ Fun(Cop,S)

lifts essentially uniquely to a fully-faithful m-finite limit preserving functor

よCMonm : C ↪ Funmfin(Cop,CMonm) ⊆ Fun(Cop,CMonm)

□

Currying we obtain a functor

HomCMonm(−, −) : Cop × C → CMonm

lifting MapC(−, −), and hence giving each mapping space a canonical m-commutative monoid
structure.

Additionally, universality implies that if C is m-semiadditive, then the forgetful functor

CMonm(C) C, given by evaluating at a point, is an equivalence. This implies that in an m-
semiadditive ∞-category, then for every map of m-finite spaces q : A → B, and every X ∈ C,
we have both a restriction map q∗ : X B → X A, induced the universal property of the limit,
which can be expressed in terms of right Kan extensions as

≃
−→



as well as a transfer map q! : X A → X B induced by the equivalences NmA : X[A] X A

and NmB : X[B] X A and the universal property of the colimit, which can be expressed in
terms of the left Kan extensions as

≃
−→

≃
−→



Examples
Before moving into more technical work, let's review some examples of m-semiadditive ∞-
categories and the behaviour of cardinalities of m-finite spaces in them. We have the following
universal example of an m-semiadditive ∞-category:

Universal Case

For −2 ≤ m < ∞ the symmetric monoidal ∞-category of spans C = Span(Smfin) is the
universal m-semiadditive ∞-category. For every A ∈ Smfin, we have

|A|pt = (pt ← A → pt) ∈ π0MapSpan(Smfin)(pt, pt)

Note that π0MapSpan(Smfin)(pt, pt) is the set of isomorphism classes of m-finite spaces
with semiring structure given by

|A| + |B| = |A ⊔ B|, |A| ⋅ |B| = |A × B|

Similarly, CMonm is the universal presentable m-semiadditive ∞-category. The Yoneda
embedding induces a fully-faithful m-semiadditive symmetric monoidal functor

Span(Smfin) ↪ CMonm



In Chromatic homotopy theory we often come across examples of ∞-semiadditive ∞-
categories of higher height. For a given prime p, and 0 ≤ n < ∞, let K(n) be the Morava K-
theory spectrum of height n at the prime p. We have that the localizations SpK(n) and SpT (n)

are ∞-semiadditive. For n = 0, SpK(0) ≃ SpT (0) ≃ SpQ, and the cardinalities recover the
homotopy cardinality. Similarly, since SpK(n) is p-local for all n, if A is a π-finite space whose
homotopy groups have cardinality prime to p, then the K(n)-local cardinality of A coincides
with the homotopy cardinality for all n by the previous example. However, this does not hold in
general for π-finite spaces whose cardinality is not prime to p.

To study the K(n)-local cardinalities of π-finite spaces, it is useful to consider their image in
Morava E-theory. For n ≥ 1, let En be the Morava E-theory associated with some formal
group of height n over Fp, viewed as an object of CAlg(SpK(n)). In particular, we have a (non-
canonical) isomorphism

π∗En ≅W(Fp)[[u1, . . . , un−1]][u±1], |ui| = 0, |u| = 2

taking an m-finite space A to the free m-commutative monoid on A.

Homotopy Cardinality

For a π-finite space A, the homotopy cardinality of A is the rational number

|A|0 := ∑
a∈π0(A)

∏
n≥1

|πn(A, a)|(−1)n

∈ Q≥0

We say an ∞-category C is semirational if it is 0-semiadditive (i.e. 0-finite spaces are C-
ambidextrous, which are contractible, empty, and discrete spaces) and for each n ∈ N,
multiplication by n is invertible in C (e.g. SpQ or QMod). Here multiplication by n on an
object C is given by the cardinality |pt⊔n|C , which is the composite

C C ×n C ⊔n C

A semirational ∞-category which admits all 1-finite colimits is automatically ∞-
semiadditive, and for every π-finite space A, we have that its cardinality is its homotopy
cardinality:

|A|C = |A|0 ∈ Q≥0 ⊆ End(idC)

This comes from the fact that the cardinality is additive, and for every fiber sequence of
π-finite spaces F → A → B where B is connected, |A| = |F ||B|.

Δ
−→

Nmpt⊔n

←−
≅

∇
−→

–

–

Chromatic Cardinality



The following gives another family of examples of higher semiadditive ∞-categories:

Conversely, the m-semiadditive structure on CatmfinLim
∞  is given by taking limits of constant

diagrams.

The ∞-category Θn := ModEn(SpK(n)) is ∞-semiadditive by Theorem 5.3.1 in6, and
hence we can consider cardinalities of π-finite spaces in π0En. The p-typical height n
cardinality of a π-finite space A is defined to be

|A|n := |A|Θn
∈ π0En

For n = 0 we can identify Q with π0E0, and so can recover the homotopy cardinality. For
n > 0, let L̂pA := Map(BZp, A) be the p-adic free loop space of A. It turns out that
|A|n ∈ π0En belongs to the subring Z(p) ⊆ π0En and satisfies |A|n = |L̂pA|n−1.
Applying this inductively we see that

|A|n = |Map(BZn
p , A)|0 ∈ Z(p)

for the p-typical height n cardinality in terms of the homotopy cardinality. If A is a p-
space, then L̂pA ≃ LA := Map(S 1, A) coincides with the ordinary loop space.

–

Question

How can we show that L̂pA ≃ LA when A is a p-space? Hint: First consider the universal
examples K(Z/p, n).

Prop: Cat
mfinColim

∞  is m-semiadditive

For every −2 ≤ m ≤ ∞ the ∞-category CatmfinColim
∞  is m-semiadditive.

Categorical Cardinality

Let −2 ≤ m ≤ ∞ and let C ∈ CatmfinColim
∞ . For every m-finite space A, the m-

semiadditive structure of CatmfinColim
∞  gives rise to a functor |A|C : C → C. When m < ∞,

|A|C ≃ colimA Δ(−) is given by taking the constant colimit on A. Since
Cat∞finColim

∞ → CatmfinColim
∞  preserves limits, and hence is m-semiadditive, the same claim

holds for m = ∞.

(co)Cartesian m-commutative Monoid Structure



The full subcategory Cat⊕m
∞ ⊆ CatmfinColim

∞ ,CatmfinLim
∞  is closed under colimits, and in particular

is m-semiadditive, since the inclusion admits the right adjoint CMonm(D).

Height
We will explore the notion of semiadditive height, as well as its relation to other classical notions
of height. The definition of height will depend on a choice of a prime p ∈ Z, and a p-typical
version of m-semiadditivity where we use m-finite p-spaces rather than all m-finite spaces.

For C ∈ CatmfinColim
∞ , since Smfin is freely generated from a point under m-finite colimits,

we have

MapmfinL(Smfin, C) ≃ Map(pt, C) ≃ C
≃

and the resulting m-commutative monoid structure on C≃ is referred to as the
cocartesian structure. Dually, for C ∈ CatmfinLim

∞ , we have

MapmfinR(S
op
mfin, C) ≃ Map(pt, C) ≃ C

≃

and the resulting m-commutative monoid structure on C≃ is referred to as the cartesian
structure.

p-Spaces

Recall that a space X is a p-space if and only if all its homotopy groups are p∞-torsion
(i.e. for each n ≥ 1, and each x ∈ πnX, there exists k ≥ 1 such that pkx = 0). When X
has finite homotopy groups, this implies that they are p-groups (i.e. their order is a power
of p).

p-Typical Semiadditivity

Let p be a prime and 0 ≤ m ≤ ∞. We say that

1. An ∞-category C is p-typically m-semiadditive if all m-finite p-spaces are C-
ambidextrous.

2. A functor F : C → D between such is p-typically m-semadditive if it preserves all
m-finite p-space colimits (or equivalently limits).

3. An O-monoidal ∞-category C for an ∞-operad O is p-typically m-semiadditively O
-monoidal if it is p-typically m-semiadditive and is compatible with m-finite p-space
colimits (equivalently limits).



Let Cat⊕m,p
∞ ⊆ Cat∞ denote the sub-∞-category of p-typically m-semiadditive ∞-categories

and p-typically m-semiadditive functors.

Proof.
(1) Since BkCp = K(Z/p, k) is an m-finite p-space for all 1 ≤ k ≤ m, the only if direction is
definitional. Conversely, let A be an m-finite p-space. Since C is 0-semiadditive, we are reduced
to the case that A is connected. Indeed, otherwise A ≃ ∐N

i=1 Ai for Ai connected m-finite p-
spaces. Then

C
A ≃

N

∏
i=1

C
Ai

and colimA, limA : CA → C can be given by ∐N
i=1 colimAi

 and ∏N
i=1 limAi

 by iterating Kan
extensions, so as C is 0-semiadditive it suffices that the norm maps colimAi → limAi  are
equivalences.

Now, since A is connected, the Postnikov tower of A can be refined to a tower of principal
fibrations

A ≃ Ar → ⋯ → A1 → A0 ≃ pt

such that the fiber of each Ai → Ai−1 is of the form BkiCp for some 1 ≤ ki ≤ m, since all
connected π-finite p-spaces are Cp-nilpotent.

Since we can iterate Kan extensions, to show A is C-ambidextrous it suffices to show each
Ai → Ai−1 is C-ambidextrous, and since C-ambidexterity is a fiber-wise condition, this follows
from the fact that BkiCp is C-ambidextrous.

(2) Analogously to (1), we can reduce to connected m-finite p-spaces, at which point we can
take a tower of principal fibrations, so that commuting with A-(co)limits follows from commuting
with (Ai → Ai−1)-(co)limits, which are equivalent to commuting with fiber-wise indexed
(co)limits, i.e. BkiCp-(co)limits.
□

Prop: p-Typical m-Semiadditivity from Building Blocks

Let 0 ≤ m ≤ ∞.

(1) An ∞-category C ∈ Cat∞
⊕0  is p-typically m-semiadditive if and only if BkCp is C-

ambidextrous for all k = 1, . . . , m

(2) For C,D ∈ Cat
⊕m,p
∞ , a 0-semiadditive functor F : C → D is p-typically m-

semiadditive if and only if it preserves BkCp-(co)limits for all k = 1, . . . , m.



For a p-typical m-semiadditive ∞-category C, the cardinalities |BnCp| for 0 ≤ n ≤ m will play
an important role in our definition of semiadditive height. The motivating example to consider in
what follows is the following:

We now move to defining semiadditive height. This relies on the following notion of divisibility
and completeness with respect to natural endomorphisms of the identity.

We suggestively write C[α−1], Ĉα ⊆ C for the full subcategories spanned by the α-divisible and
α-complete objects, respectively.

En-modules of K(n)-local Spectra

For C = ModEn
(SpK(n)), we have

|BkCp|n = p(
n−1

k )

for all n, k ≥ 0, where the n = 0 case is interpreted using (−1
k
) = (−1)k.

Divisibility and Completeness

Let C ∈ Cat∞ and let α : idC ⇒ idC be a natural endomorphism. An object X ∈ C is
called:

1. α-divisible if αX is invertible
2. α-complete if Map(Z, X) ≃ pt for all α-divisible Z

Semiadditive Height of Objects

Let C be a p-typical m-semiadditive ∞-category and let 0 ≤ n ≤ m < ∞. We define the
p-typical semiadditive height of X as follows for X ∈ C:

(1) We say htp(X) ≤ n if X is |BnCp|-divisible
(2) We say htp(X) > n if X is |BnCp|-complete
(3) We say htp(X) = n if htp(X) ≤ n and htp(X) > n − 1.

Warning

When C is not ∞-semiadditive, the notion of semiadditive height is not well-defined for all
objects in C. Indeed, we can only test an objects height being n ≥ or n < if n is ≤ to the
semiadditivity of C, so we can have objects which have height m <, and not have a finite
defined height.



For X ∈ C which is ∞-semiadditive we write htp(X) = ∞ if and only if htp(X) > k for all
k ≥ 0. By convention −1 < htp(X) ≤ ∞ for all X 0, and htp(X) ≤ −1 or htp(X) > ∞ if
and only if X ≃ 0.

The next result helps justify the inequality notation.

Proof.
For (1) it suffices by iterating that if htp(X) ≤ n for some n ≤ m − 1, then htp(X) ≤ n + 1.
Consider the principal fiber sequence

BnCp → pt → Bn+1Cp

By assumption all maps and spaces in this sequence are C-ambidextrous. Since htp(X) ≤ n,
we have that |BnCp|X is invertible. By the cardinality decomposition for principal fibrations we
get

|Bn+1Cp|X|BnCp|X = |pt|X = idX

Thus, since |BnCp|X is invertible, so is |Bn+1Cp|X, and in fact it is its inverse, and hence
htp(X) ≤ n + 1.

In particular, the statements htp(X) ≤ n and htp(X) > n signify a certain property that
X satisfies, and htp(X) is in general not a well-defined number which can be compared
with n.

≃

Height 0

Let C be a 0-semiadditive ∞-category. Then an object X ∈ C is of height 0 if and only if
X X, the map obtained by

X

p

∏
i=1

X

p

∐
i=1

X X

is an equivalence, and of height htp(X) > 0 if it is p-complete.

p⋅
−→

Δ
−→

≃
←−

∇
−→

Prop: Inequalities of Height

Let C be a p-typical m-semiadditive ∞-category and let 0 ≤ n0 ≤ n1 ≤ m be some
integers. Then for X ∈ C

(1) If htp(X) ≤ n0 then htp(X) ≤ n1

(2) If htp(X) > n1 then htp(X) > n0



(2) now follows since (1) showed that |Bn0Cp|-divisible spaces are also |Bn1Cp|-divisible.
□

For C a p-typical m-semiadditive ∞-category we define

C≤n := C[|BnCp|−1], C>n = Ĉ|BnCp|, Cn = C≤n ∩ C>n−1

where Cn = ˆC[|BnCp|−1]|Bn−1Cp| = Ĉ|Bn−1Cp|[|B
nCp|−1].

These constructions all form p-typical m-semiadditive ∞-categories.

This holds in fact for Ĉα and C[α−1], with α : idC ⇒ idC an arbitrary natural endomorphism.

p-Typical Height in Stable ∞-Categories

If C is a stable ∞-category with non-trivial object X, and if htp(X) > 0, then for any
other prime ℓ we cannot have htℓ(X) > 0. Indeed, if ℓ ≠ p is another prime such that
htℓ(X) > 0, then this says that for all TBC

Height of a p-typical m-semiadditive ∞-category

If C is a p-typical m-semiadditive ∞-category and 0 ≤ n ≤ m ≤ ∞, then we write

(1) If C = C≤n, then Htp(C) ≤ n

(2) If C = C>n, then Htp(C) > n

(3) If C = Cn, then Htp(C) = n.

Prop: p-typical m-semiadditive ∞-categories from Height Filtration

Let C be a p-typical m-semiadditive ∞-category and let 0 ≤ n ≤ m. Then the
subcategories C≤n, C>n, Cn are stable under limits in C. In particular, they are all p-
typically m-semiadditive, and are furthermore m-semiadditive if C is.

Prop: Height Can Only Decrease

If F : C → D is a map in Cat⊕m,p

∞ , then for all X ∈ C and 0 ≤ n ≤ m, if htC,p(X) ≤ n then
htD,p(F(X)) ≤ n. If F  is conservative, then the converse holds as well.



This is immediate from the fact that functors preserve equivalences and F  maps
|BnCp| : idC ⇒ idC to |BnCp| : idD ⇒ idD. The following shows that the statement for the
opposite inequalities does not in general hold.

For inclusions however we do get such a result.

Proof.
(1) is immediate from the preservation and reflection of height upper bounds along semiadditive
functors.

(2) If htC,p(X) > n, then for all Z ∈ C≤n, MapC(Z, X) ≃ pt. But by (1) we have
C

′
≤n = C≤n ∩ C′, and since the inclusion is full, MapC′(A, B) ≃ MapC(A, B) for all A, B ∈ C′.

Thus, for all Z ∈ C
′
≤n,

MapC′(Z, X) ≃ MapC(Z, X) ≃ pt

so that htC′,p(X) > n.
□

In the case of p-typically m-semiadditively monoidal ∞-categories, the functor perspective on
height implies that we can bound the height of the ∞-category via the height of its monoidal
unit.

Example

The 0-semiadditive functor LQ : Sp(p) → SpQ maps the p-complete sphere Ŝp which is

of height > 0 to a non-zero object Q ⊗ Ŝp of height 0.

Prop: Height w.r.t Inclusions

Let C be a p-typical m-semiadditive ∞-category and let C′ ⊆ C be a full subcategory
closed under m-finite p-space (co)limits. Given X ∈ C′ and 0 ≤ n ≤ m we have

(1) htC′,p(X) ≤ n if and only if htC,p(X) ≤ n

(2) htC,p(X) > n implies htC′,p(X) > n

Corollary: ∞-Category Height via Monoidal Unit Height

If C is a p-typical m-semiadditively monoidal ∞-category and 0 ≤ n ≤ m, then
Htp(C) ≤ n if and only if htp(𝟙) ≤ n.



This follows from the functor perspective on height applied to the p-typically m-semiadditive
functors X ⊗ (−) : C → C for X ∈ C.

Comparing Heights
One of the important aspects of semi-additive height is its relation to the classical notion of
stable height.

In the case of p-local spectra,

Sp(p),≤stn = Lf
nSp, Sp(p),>stn−1 = SpF(n), Sp(p),nst = SpT (n)

A first relation between semiadditive and stable height comes from the following:

Idea: We can describe the subcategories of objects at a certain height in terms of tensoring in
PrL. Further, it turns out that (Cnst)n ≃ Cnst  and (Cnst)k ≃ 0 for k ≠ n.
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