Introduction to Semiadditivity

Introduction/Motivation

These notes are for a 30~40 minute talk on semi-additivity as appearing in Sections 2.1 and 2.2 of the paper *Ambidexterity and Height*^[1], which was given as part of an Ambidexterity seminar at UIUC in Fall 2025. In the paper Carmeli, Schlank, and Yanovski use the theory of higher semi-additivity to abstract and generalize the notion of *height* appearing in chromatic homotopy theory. The v_n -self maps used in the definition of chromatic height are instead replaced by the *cardinalities* of certain π -finite spaces (to be discussed soon).

Further, the semi-additive height filtration introduced in the paper refines the inclusion $\operatorname{Sp}_{K(n)}\subseteq\operatorname{Sp}_{T(n)}$, which is now known to be strict for $n\geq 0$. We also pull some ideas from later work due to Cnossen et al. on Parameterized Semi-additivity^[2], and earlier work on applications of ambidexterity to chromatic homotopy theory^[3].

Let's begin by recalling the notation used in the paper:

Conventions:

- $\mathsf{Cat}^{\mathsf{st}}_{\infty} \subseteq \mathsf{Cat}_{\infty}$ will denote the sub- ∞ -category spanned by stable ∞ -categories and exact functors. Similarly, $\mathsf{Pr}^L_{\mathsf{st}} \subseteq \mathsf{Pr}^L$ is the full-subcategory spanned by stable presentable ∞ -categories.
- A space $A \in \mathcal{S}$ is
 - m-finite for $m \geq -2$, if m = -2 and A is contractible, or $m \geq -1$, the set $\pi_0 A$ is finite, and all fibers of the diagonal $\Delta: A \to A \times A$ are (m-1)-finite5
 - π -finite or ∞ -finite, if it is m-finite for some integer $m \ge -2$. For $-2 \le m \le \infty$ we write $S_{m \text{fin}} \subseteq S$ for the full subcategory spanned by m-finite spaces.
 - $p ext{-space}$, for $p\in\mathbb{Z}$ a prime, if all the homotopy groups of A are $p ext{-groups}$.
- Given an ∞ -category $\mathcal{C} \in \mathsf{Cat}_\infty$,
 - For every map of spaces $A \stackrel{q}{\to} B$, we write $q^* : \mathcal{C}^B \to \mathcal{C}^A$ for the pullback functor and $q_!$ and q_* for the left and right adjoints of q^* (i.e. given by left and right Kan extension, respectively), whenever they exist
 - Under the equivalence $\mathcal{S}_{/\mathsf{pt}} \simeq \mathcal{S}$, we will identify a space A with its map to the terminal object, so that above we would write A^* instead of q^* for $q:A\to\mathsf{pt}$, and similarly for the others
 - For each $X\in\mathcal{C}$, we write $X[A]:=A_!A^*X$, and write $\nabla:X[A]\to X$ for the co-unit (called the **fold**). Similarly, we write $X^A:=A_*A^*X$ and write $\Delta:X\to X^A$ for the unit (called the **diagonal**)

- Given a map of spaces $A \stackrel{q}{\to} B$, and $b \in B$, we write $q^{-1}(b)$ for the homotopy fiber of q over b. We say that:
 - An ∞ -category $\mathcal C$ admits q-limits (resp. q-colimits) if it admits all limits (resp. colimits) of shape $q^{-1}(b)$ for all $b \in B$
 - A functor $F: \mathcal{C} \to \mathcal{D}$ preserves q-limits (resp. preserves q-colimits) if it preserves all limits (resp. colimits) of shape $q^{-1}(b)$ for all $b \in B$
- For every $-2 \le m \le \infty$
 - *m*-finite (co)limits refer to (co)limits indexed by an *m*-finite space
 - We write $\mathsf{Cat}_{\infty}^{m\mathsf{finColim}} \subseteq \mathsf{Cat}_{\infty}$ (resp. $\mathsf{Cat}^{m\mathsf{finLim}} \subseteq \mathsf{Cat}_{\infty}$) for the subcategory spanned by ∞ -categories admitting m-finite colimits (resp. limits) and functors preserving them.
 - For $\mathcal{C},\mathcal{D}\in\mathsf{Cat}^{m\mathsf{finColim}}_\infty$ (resp. $\in\mathsf{Cat}^{m\mathsf{finLim}}_\infty$) We wrote $\mathsf{Fun}^{m-\mathsf{finL}}(\mathcal{C},\mathcal{D})$ (resp. $\mathsf{Fun}^{m\mathsf{finR}}(\mathcal{C},\mathcal{D})$) for the full subcategory of $\mathsf{Fun}(\mathcal{C},\mathcal{D})$ spanned by m-finite colimit (resp. limit) preserving functors
 - We write $\mathsf{Cat}_\infty^{\oplus -m} \subseteq \mathsf{Cat}_\infty$ for the subcategory spanned by the m-semiadditive ∞ -categories and m-semiadditive (i.e. m-finite colimit preserving) functors.
 - Given an ∞ -operad \mathcal{O} , we say $\mathcal{C} \in \mathsf{Alg}_{\mathcal{O}}(\mathsf{Cat}_{\infty})$ is compatible with \mathcal{K} -indexed colimits for some collection of ∞ -categories \mathcal{K} if the underlying ∞ -category \mathcal{C} admits \mathcal{K} -indexed colimits and every tensor operation $\otimes : \mathcal{C}^n \to \mathcal{C}$ of \mathcal{O} preserves \mathcal{K} -indexed colimits in each variable
 - An m-semiadditively \mathcal{O} -monoidal ∞ -category is an \mathcal{O} -monoidal m-semiadditive ∞ -category which is compatible with m-finite colimits \mathbf{Q} . What does this mean?
 - If $\mathcal C$ is a monoidal ∞ -category and $\mathcal D$ is an ∞ -category enriched in $\mathcal C$, we write $\operatorname{Hom}_{\mathcal D}^{\mathcal C}(X,Y)$ for the $\mathcal C$ -mapping object of $X,Y\in \mathcal D$. When $\mathcal C$ is closed, we write $\operatorname{Hom}_{\mathcal C}(X,Y)$ for $\operatorname{Hom}_{\mathcal C}^{\mathcal C}(X,Y)$. For every ∞ -category $\mathcal C$ we write $\operatorname{Hom}_{\mathcal C}^{\mathcal S}(X,Y)=\operatorname{Map}_{\mathcal C}(X,Y)$.

The importance of m-finite maps and spaces lies in their use as indexing ∞ -categories for diagrams that we are interested in comparing limits and colimits of. Specifically, the m in m-semiadditivity indicates the size of the π -finite spaces A for which we have norm maps

$$Nm_A : colim_A \Rightarrow lim_A$$

which are equivalences.

Semiadditivity

Let's begin with the basic notion of ambidexterity in chromatic homotopy theory.

 $oxed{\exists}$ Ambidexterity of π -finite Maps

Let $\mathcal{C} \in \mathsf{Cat}_\infty$. A π -finite map $A \overset{q}{ o} B$ is called:

- 1. **weakly** ${\mathcal C}$ -ambidextrous if it is an equivalence, or $\Delta_q:A o A imes_BA$ is ${\mathcal C}$ -ambidextrous
- 2. \mathcal{C} -ambidextrous if it is weakly \mathcal{C} -ambidextrous, \mathcal{C} admits all q-limits and q-colimits, and the norm map $\operatorname{Nm}_q:q_!\to q_*$ is an equivalence.

A (-2)-finite map, i.e. an equivalence, is always $\mathcal C$ -ambidextrous. If q is m-finite, then the diagonal

$$A \overset{\Delta_q}{\longrightarrow} A imes_B A$$

is (m-1)-finite and the ambidexterity of Δ_q allows in turn the definition of ${\sf Nm}_q$.

The property of being $\mathcal C$ -ambidextrous is preserved by pullbacks and determined by its fibers. Since the fibers of the diagonal $A \to A \times A$ are path spaces of A, A is weakly $\mathcal C$ -ambidextrous if and only if the path spaces of A are $\mathcal C$ -ambidextrous. This begins the inductive construction since the path-space reduces from an m-finite space to an (m-1)-finite space.

$oxditsize \$ Prop: Characterization of $\mathcal C ext{-Ambidextrous Morphism}$

Let $\mathcal C$ be an ∞ -category and let $A \overset{q}{\to} B$ be a π -finite map. The map is $\mathcal C$ -ambidextrous if and only if the following hold:

- 1. q is weakly ${\cal C}$ -ambidextrous
- 2. ${\cal C}$ admits all q-limits and q-colimits
- 3. Either q_* preserves all q-colimits or $q_!$ preserves all q-limits.

Proof Idea.

From the discussion above, we can assume wlog that $B=\mathsf{pt}$. The forward implication is immediate due to the norm equivalence, so it suffices to show that if (1)-(3) hold, then the norm map is an equivalence.

$oxditsize {f \Sigma}$ Prop: Closure of Ambidexterity under ∞ -category constructions

Let $\mathcal C$ be an ∞ -category and let A be a π -finite $\mathcal C$ -ambidextrous space. The space A is also $\mathcal D$ -ambidextrous for

- (1) $\mathcal{D} = \mathcal{C}^{op}$
- (2) $\mathcal{D} = \mathsf{Fun}(\mathcal{I},\mathcal{C})$ for \mathcal{I} an ∞ -category
- (3) $\mathcal{D}\subseteq\mathcal{C}$ containing the final object and closed under Ω^k_aA -limits for all $a\in A$ and $k\geq 0$

• **(4)** $\mathcal{D}\subseteq\mathcal{C}$ containing the initial object and closed under Ω^k_aA -colimits for all $a\in A$ and $k\geq 0$.

Note: Here $\Omega^k_a A$ is the k-fold based loop space at $a \in A$.

The first two properties are classical, while the last two are dual and follow from the inductive construction of norm maps.

b Important

The main feature of ambidexterity is that it allows us to *integrate* families of morphisms in \mathcal{C} . That is, given a \mathcal{C} -ambidextrous map $A \stackrel{q}{\to} B$ and $X,Y \in \mathcal{C}^B$, we have a map

$$\int_q: \mathsf{Map}_{\mathcal{C}^A}(q^*X, q^*Y) o \mathsf{Map}_{\mathcal{C}^B}(X, Y)$$

which can be given by the composite

$$\mathsf{Map}_{\mathcal{C}^A}(q^*X,q^*Y) \xrightarrow{q_!} \mathsf{Map}_{\mathcal{C}^B}(q_!q^*X,q_!q^*Y) \xleftarrow{-\circ \mathsf{Nm}_q} \mathsf{Map}_{\mathcal{C}^B}(q_*q^*X,q_!q^*Y) \xrightarrow{\epsilon \circ -\circ \eta} \mathsf{Map}_{\mathcal{C}^B}$$

When $B={\sf pt}$ we can think of an element of ${\sf Map}_{\mathcal{C}^A}(q^*X,q^*Y)$ as a map $A \xrightarrow{f} {\sf Map}_{\mathcal{C}}(X,Y)$, and $\int_A f \in {\sf Map}_{\mathcal{C}}(X,Y)$ as the sum of f over points of A. Explicitly, the identification of mapping spaces comes from the equivalences

$$\mathsf{Map}_{\mathcal{C}^A}(q^*X,q^*Y)\simeq \mathsf{Map}_{\mathcal{C}}(X,q_*q^*Y)\simeq \mathsf{lim}_A\mathsf{Map}_{\mathcal{C}}(X,Y)=\mathsf{Map}_{\mathcal{C}}(X,Y)^A$$

Intuition for Induction: For a space A and a diagram $F:A\to\mathcal{C}$, to specify a norm map $\operatorname{Nm}_A:\operatorname{colim}_A F\to \operatorname{lim}_A F$ is to specify a homotopy coherently compatible collection of morphisms $\operatorname{Nm}_A^{a,b}:F(a)\to F(b)$, for $a,b\in A$. F always provides a *family* of candidates for these maps, $F_{a,b}:\operatorname{Map}_A(a,b)\to\operatorname{Map}_\mathcal{C}(F(a),F(b))$, but a-priori there is no coherent choice for them which can be made. But, if we can integrate over the spaces $\operatorname{Map}_A(a,b)$, we can just take

$$\mathsf{Nm}_A^{a,b} = \int_{A_{a,b}} F_{a,b}$$

When F is constant on some object X, then the Norm map is the same as a map of spaces $A \times A \to \mathsf{Map}_{\mathcal{C}}(X,X)$, where the above construction specializes to $\mathsf{Nm}_A^{a,b} = |\mathsf{Map}_A(a,b)|_X$.

Note: Important

The initial claim comes from the natural equivalences

$$\mathsf{Map}_{\mathcal{C}}(\mathsf{colim}_A F, \mathsf{lim}_A F) \overset{\simeq}{\to} \mathsf{Map}_{\mathcal{C}^A}(F, \underline{\mathsf{lim}_A F}) \simeq \mathsf{Map}_{\mathcal{C}^A}(F, \mathsf{lim}_A \overline{F}) \overset{\simeq}{\to} \mathsf{Map}_{(\mathcal{C}^A)^A}(\underline{F}, \overline{F})$$

where $\overline{F}:A\to\mathcal{C}^A$ is the whiskering of $F\circ\pi_1:A\times A\to\mathcal{C}$, while $\underline{F}:A\to\mathcal{C}^A$ is the whiskering of $F\circ\pi_2:A\times A\to\mathcal{C}$. Thus, we have a natural equivalence

$$\mathsf{Map}_{\mathcal{C}}(\mathsf{colim}_A F, \mathsf{lim}_A F) \overset{\simeq}{ o} \mathsf{Map}_{\mathcal{C}^{A imes A}}(F \circ \pi_2, F \circ \pi_1)$$

Thus, the data of a map $\operatorname{colim}_A F \to \operatorname{lim}_A F$ is equivalent to the data of a map of simplicial sets $\alpha: [1] \times A \times A \to \mathcal{C}$ such that $\alpha_0 = F \circ \pi_2$ and $\alpha_1 = F \circ \pi_1$.

Further, in the case when $F=\underline{X}$ is the constant functor at some $X\in\mathcal{C}$. In this case, the data of a map $\operatorname{colim}_A X \to \lim_A X$ is equivalent to the data of a map of simplicial sets $\alpha_X:[1]\times A\times A\to \mathcal{C}$ such that $\alpha_X|_{\partial[1]\times A\times A}=\underline{X}$. A natural family of such transformations is then a map of simplicial sets $\alpha:[1]\times A\times A\times \mathcal{C}\to \mathcal{C}$ such that $\alpha|_{\partial[1]\times A\times A\times \mathcal{C}}=\pi_{\mathcal{C}}$.

More generally, if \mathcal{C} has all A-shaped (co)limits, so that we have functors $\operatorname{colim}_A, \operatorname{lim}_A : \mathcal{C}^A \to \mathcal{C}$, then the natural equivalences we want are given by using adjoints and (co)continuity of the diagonal:

$$\mathsf{Nat}(\mathsf{colim}_A,\mathsf{lim}_A) \xrightarrow{\simeq} \mathsf{Nat}(\Delta_A\mathsf{colim}_A,\mathrm{id}_{\mathcal{C}^A}) \xrightarrow{\simeq} \mathsf{Nat}(\mathsf{colim}_A(\Delta_A \circ -),\mathrm{id}_{\mathcal{C}^A}) \xrightarrow{\simeq} \mathsf{Nat}(\Delta_A \circ -,\Delta_A)$$

Thus, a family of norms $\operatorname{Nm}_A:\operatorname{colim}_A\Rightarrow \operatorname{lim}_A$ is equivalent to a natural transformation $(\Delta_A\circ -)\Rightarrow \Delta_A:\mathcal{C}^A\to (\mathcal{C}^A)^A.$

Similarly, if $\mathcal C$ has all q-shaped (co)limits for $q:A\to B$, so that $q_!\dashv q^*\dashv q_*$ exist, then we have natural maps

$$\mathsf{Nat}(q_!,q_*) \xrightarrow{\simeq} \mathsf{Nat}(q^*q_!,\mathrm{id}_{\mathcal{C}^A}) \xrightarrow{-\circ \mathsf{BC}_{q^*,\pi_2^*}^L(\alpha)} \mathsf{Nat}((\pi_2)_!\pi_1^*,\mathrm{id}_{\mathcal{C}^A}) \xrightarrow{\simeq} \mathsf{Nat}(\pi_1^*,\pi_2^*)$$

where $\alpha:\pi_1^*q^*\Rightarrow\pi_2^*q^*$ is the natural equivalence coming from $\pi_1^*q^*\simeq (q\pi_1)^*=(q\pi_2)^*\simeq\pi_2^*q^*$, and the center map uses the <u>mate calculus</u> on this transformation to obtain $\mathrm{BC}_{q^*,\pi_2^*}^L(\alpha):(\pi_2)_!\pi_1^*\Rightarrow q^*q_!$. If this Beck-Chevalley transformation is an equivalence, then it follows that the data of a norm $\mathrm{Nm}_q:q_!\Rightarrow q_*$ is equivalent to the data of a natural transformation $\pi_1^*\Rightarrow\pi_2^*:\mathcal{C}^A\to\mathcal{C}^{A\times_BA}$. Since the square in which α appears is a homotopy pullback square of ∞ -groupoids, and hence we can assume without loss of generality that q is a Kan fibration, the square is exact, and hence it satisfies the **Beck-Chevalley condition** (c.f. Chapter 13 of [4]).

Inductive Approach: If A is an m-finite space, then the path spaces $\mathsf{Map}_A(a,b)$ are (m-1)-finite. Thus, if inductively we have invertible canonical norm maps Nm_B for all (m-1)-finite spaces B, then we obtain a canonical way to integrate (m-1)-finite families of morphisms,

which allows us to define norm maps for all m-finite spaces. Whether all these new norm maps are isomorphisms is now a **property**, which if holding let's us continue the induction:

- (m=-2) We define every ∞ -category to be (-2)-semiadditive. Recall that the (-2)-finite spaces are the contractible ones, and the canonical norm map $\mathrm{Nm}_{\mathrm{pt}}$ is hence an equivalence, being equivalent to the identity transformation on $\mathrm{id}_{\mathcal{C}}$. This just says we can canonically sum a one point family of maps.
- (m=-1) The only non-contractible (-1)-finite space is $A=\emptyset$. The associated norm map is the unique map

$$\mathsf{Nm}_\emptyset:0_\mathcal{C} o 1_\mathcal{C}$$

from the initial object to the terminal object of $\mathcal C$, which always exists. Thus, $\mathcal C$ is (-1)-semiadditive if and only if it is *pointed*. This allows integration of empty families of morphisms, which is to say that for any $X,Y\in\mathcal C$, we get a canonical zero map given by the composition

$$X
ightarrow 1_{\mathcal{C}} \stackrel{\simeq}{\longleftarrow} 0_{\mathcal{C}}
ightarrow Y$$

• $(m \geq 0)$ Let A be an m-finite space, and suppose $\mathcal C$ is (m-1)-semiadditive. Then in particular we have an equivalence $\operatorname{Nm}_{\Delta_A}:\Delta_{A,!}\stackrel{\simeq}{\Longrightarrow}\Delta_{A,*}:\mathcal C^A\to\mathcal C^{A\times A}$, which corresponds to a wrong-way co-unit $\nu_{\Delta_A}:\Delta_A^*\Delta_{A,!}\Rightarrow\operatorname{id}$ and a wrong-way unit $\mu_{\Delta_A}:\operatorname{id}\Rightarrow\Delta_{A,*}\Delta_A^*$, so that we can define the map

$$\pi_1^* \stackrel{\eta}{ o} \Delta_{A,*} \Delta_A^* \pi_1^* \simeq \Delta_{A,*} \stackrel{\mathsf{Nm}_{\Delta_A}}{\stackrel{\simeq}{ o}} \Delta_{A,!} \simeq \Delta_{A,!} \Delta_A^* \pi_2^* \stackrel{\epsilon_{\Delta_A}}{\longrightarrow} \pi_2^*$$

which from the discussion preceding the induction is equivalent to a norm map ${\sf Nm}_q:q_!\Rightarrow q_*$, which is given by

$$q_! \stackrel{\eta \star q_!}{\Longrightarrow} q_* q^* q_! \stackrel{q_* \mathsf{BC}^L_{q^*,\pi_2^*}(\mathrm{id})}{\overset{\simeq}{\simeq}} q_* (\pi_2)_! \pi_1^* \stackrel{\eta}{ o} q_* (\pi_2)_! \Delta_{A,*} \Delta_A^* \pi_1^* \stackrel{\mathsf{Nm}_{\Delta_A}}{\overset{\simeq}{\sim}} q_* (\pi_2)_! \Delta_{A,!} \Delta_A^* \pi_2^* \stackrel{q_* (\pi_2)_! \epsilon}{\overset{\simeq}{\sim}} q_* (\pi_2)_! \Delta_A^* \stackrel{q_* (\pi_2)_! \epsilon}{\overset{\simeq}{\sim}} q_* (\pi_2)_$$

where the Beck-Chevalley transformation can be written as the composite

$$\mathsf{BC}^L_{q^*,\pi_2^*}(\alpha):(\pi_2)_!\pi_1^* \xrightarrow{(\pi_2)_!\pi_1^* \star u_{q^*}} (\pi_2)_!\pi_1^*q^*q_! \xrightarrow{(\pi_2)_!\star \alpha \star q_!} (\pi_2)_!\pi_2^*q^*q_! \xrightarrow{c_{\pi_2} \star q^*q_!} q^*q_!$$

As a first example, in the m=0 step A is equivalent to a set, so we can replace A by a set if necessary. Then $X:A\to\mathcal{C}$ is precisely a set of objects $(X_a)_{a\in A}$ in \mathcal{C} indexed by those in A, and $\Delta_{A,!}X:A\times A\to\mathcal{C}$ is the matrix of objects $(X_{i,j})_{i,j\in A}$ with $X_{a,a}=X_a$ and $X_{a,b}=0_{\mathcal{C}}$ when $a\neq b$, and similarly $\Delta_{A,*}X:A\times A\to\mathcal{C}$ is the matrix of objects $(X'_{i,j})_{i,j\in A}$ with $X'_{a,a}=X_a$ and $X'_{a,b}=1_{\mathcal{C}}$ with $a\neq b$. On the other hand, $\pi_1^*X=(X_a)_{a,b\in A}$ and

 $\pi_2^*X=(X_b)_{a,b\in A}$ are matrices with constant rows and constant columns, respectively. The composite

$$(X_a)_{a,b\in A} o (X_{a,b}')_{a,b\in A}\stackrel{\simeq}{\longleftarrow} (X_{a,b})_{a,b\in A} o (X_b)_{a,b\in A}$$

is given precisely by the matrix of maps $f_{a,b}: X_a \to X_b$ with $f_{a,a} = \operatorname{id}_{X_a}$, while for $a \neq b$, $f_{a,b}: X_a \stackrel{!}{\to} 1_{\mathcal{C}} \stackrel{\cong}{\longleftarrow} 0_{\mathcal{C}} \stackrel{!}{\to} X_b$ is the unique composite through the zero object. The norm map is then the composite

$$\coprod_{a \in A} X_a o \prod_{b \in A} \coprod_{a \in A} X_a o \prod_{b \in A} \coprod_{a \in A} X'_{a,b} \stackrel{\simeq}{\longleftarrow} \prod_{b \in A} \coprod_{a \in A} X_{a,b} o \prod_{b \in A} \coprod_{a \in A} X_b o \prod_{b \in A} X_b$$

As a second example, if we're doing the m=1 step with A a connected 1-finite space, so that $A\cong BG$ for some finite group $G\cong \pi_1(A)$, then $\Delta_{A,!}X\simeq\coprod_{g\in G}X\simeq \prod_{g\in G}X\simeq \Delta_{A,*}X$. Write $A:A\to \operatorname{pt}$ for the unique map to the point. Further, $A_!X=X_{hG}$ and $A^*X=X^{hG}$ for $X\in\mathcal{C}^{BG}$ are the homotopy orbits and fixed points, respectively, while $A^*Y=Y$ for $Y\in\mathcal{C}$ is an object with trivial action, $\pi_1^*X=X$ is given $G\times G$ -action with trivial right action component, and similarly for $\pi_2^*X=X$. Finally, if $Z\in\mathcal{C}^{BG\times BG}$ is a $G\times G$ - \mathcal{C} object, then $(\pi_1)_!Z=Z_{hG\times 1}$ is the G-space given by taking homotopy orbits with respect to the first factor, and $(\pi_1)_*Z=Z^{hG\times 1}$ is the G-space given by taking homotopy fixed points with respect to the first factor. Now, the composite

$$\pi_1^*X \stackrel{\Delta}{\longrightarrow} \prod_{g \in G} X \stackrel{\simeq}{\longleftarrow} \coprod_{g \in G} X \stackrel{
abla}{\longrightarrow} \pi_2^*X$$

is given by summing over orbits. Finally, the first map $X_{hG} \to (\underline{X_{hG}})^{hG}$ is given by sending the orbits of a G-space to the homotopy fixed points of the homotopy orbits with trivial action, and the last map $(\underline{X_{hG}})^{hG} \to X^{hG}$ is given by sending the homotopy fixed points of the homotopy orbits of the original G-object viewed itself as a G-object with trivial action, to the homotopy fixed points of the underlying object. Thus, the resulting norm map is precisely the classical orbit map:

$$(X_{hG}\stackrel{\simeq}{ o} (\underline{X_{hG}})^{hG}\stackrel{\Delta}{ o} \left(\left(igoplus_{g\in G} X
ight)_{hG}
ight)^{hG}\stackrel{\Delta}{ o} (\underline{X_{hG}})^{hG}\stackrel{\simeq}{ o} X^{hG}$$

given informally by $[x]\mapsto \sum_{g\in G}g\cdot x.$

Integrating the identity morphism yields the notion of \mathcal{C} -cardinality.

$\equiv \mathcal{C}$ -cardinality

Let $\mathcal{C} \in \mathsf{Cat}_{\infty}$ and let $A \overset{q}{\to} B$ be a \mathcal{C} -ambidextrous map. We have a natural transformation $\mathrm{id}_{\mathcal{C}^B} \overset{|q|_{\mathcal{C}}}{\longrightarrow} \mathrm{id}_{\mathcal{C}^B}$ given by the composition

$$\operatorname{id}_{\mathcal{C}^B} \stackrel{u_*}{\longrightarrow} q_* q^* \stackrel{\operatorname{\mathsf{Nm}}_q}{\stackrel{\simeq}{\leftarrow}} q_! q^* \stackrel{c_!}{\stackrel{\sim}{\rightarrow}} \operatorname{id}_{\mathcal{C}^B}$$

For a $\mathcal C$ -ambidextrous space A, we write $\mathrm{id}_{\mathcal C} \xrightarrow{|A|_{\mathcal C}} \mathrm{id}_{\mathcal C}$ and call $|A|_{\mathcal C}$ the $\mathcal C$ -cardinality of A.

Note that for a given object $X \in \mathcal{C}$, $X \xrightarrow{|A|_X} X$ is exactly $\int_A \mathrm{id}_X$.

Motivating Example

Let $\mathcal C$ be a semiadditive ∞ -category. For a finite set A, viewed as an 0-finite space, the operation $|A|_{\mathcal C}$ is simply the multiplication by the natural number which is the usual cardinality of A.

Note: For a C-ambidextrous space A, the A-limits and A-colimits in C are canonically isomorphic, which implies the following:

Prop: Preservation of Limits and Colimits for Ambidextrous Spaces

Let $\mathcal{C}, \mathcal{D} \in \mathsf{Cat}_{\infty}$, and let A be a \mathcal{C} - and \mathcal{D} -ambidextrous space. A functor $F: \mathcal{C} \to \mathcal{D}$ preserves all A-limits if and only if it preserves all A-colimits. Moreover, if F preserves all A-(co)limits, then $F(|A|_{\mathcal{C}}) \simeq |A|_{\mathcal{D}}$.

Using Fubini's theorem for iso-normed functors, we can obtain the following additivity result for cardinalities. In the current context Fubini's Theorem for iso-normed functors says that if $A \stackrel{p}{\to} B \stackrel{q}{\to} C$ are π -finite maps of π -finite spaces such that p and q are both C-ambidextrous, then \int_{qp} is homotopic to the composite

$$\mathsf{Map}_{\mathcal{C}^A}(p^*q^*X, p^*q^*Y) \overset{\int_p}{\longrightarrow} \mathsf{Map}_{\mathcal{C}^B}(q^*X, q^*Y) \overset{\int_q}{\longrightarrow} \mathsf{Map}_{\mathcal{C}^C}(X, Y)$$

Prop: Additivity of Cardinalities

Let $\mathcal{C} \in \mathsf{Cat}_{\infty}$ and $A \stackrel{q}{\to} B$ a map of spaces. If B and q are \mathcal{C} -ambidextrous, then A is \mathcal{C} -ambidextrous and for every $X \in \mathcal{C}$,

$$|A|_X=\int_B |q|_{B^*X}$$

Intuition: This says that the cardinality of the total space A is the *sum over* B of the cardinalities of the fibers A_b of q. To see how this is a consequence of Fubini we can re-write both sides using the integral notation to give

$$\int_A \mathrm{id}_{A^*X} \simeq \int_B \int_q \mathrm{id}_{q^*B^*X}$$

We can interpret this as saying

$$|A imes B|_{\mathcal C} = |A|_{\mathcal C}|B|_{\mathcal C} \in \mathsf{End}(\mathrm{id}_{\mathcal C})$$

and

$$|A|_{\mathcal{C}} = \coprod_{a \in \pi_0 A} |A_a|_{\mathcal{C}} \in \mathsf{End}(\mathrm{id}_{\mathcal{C}})$$

When $\mathcal C$ is monoidal and the tensor product preserves A-colimits in each variable, Lemma 3.3.4 of $[3^{-1}]$ implies that $|A|_X$ can be identified with $|A|_{\mathbb R}\otimes X$, where $\mathbb I$ is the monoidal unit. Additionally, if $R\in \mathsf{Alg}(\mathcal C)$, then $|A|_R:R\to R$ can be identified with multiplication by the image of $|A|_{\mathbb I}\in\pi_0\mathbb I:=\pi_0\mathsf{Map}(\mathbb I,\mathbb I)$ under the unit map $\pi_0\mathbb I\to\pi_0R:=\pi_0\mathsf{Map}(\mathbb I,R)$, which we also denote by $|A|_R$.

Higher Commutative Monoids

We refer to an ∞ -category as m-semiadditive if all m-finite spaces are ambidextrous. For m=0 we recover the ordinary notion of a semiadditive ∞ -category. Note that if $\mathcal{C}\subseteq\mathcal{D}$ is a full subcategory of an m-semiadditive ∞ -category, then if \mathcal{C} is either stable under m-finite colimits or m-finite limits, then it is stable under both, and it is m-semiadditive itself.

■ *m*-Commutative Monoids

Let $-2 \le m < \infty$. For $\mathcal{C} \in \mathsf{Cat}_\infty^{m\mathsf{finLim}}$, the ∞ -category of m-commutative monoids in \mathcal{C} is given by

$$\mathsf{CMon}_m(\mathcal{C}) := \mathsf{Fun}^{m\mathsf{finR}}(\mathsf{Span}(\mathcal{S}_{m\mathsf{fin}})^{op}, \mathcal{C})$$

When $\mathcal{C} = \mathcal{S}$ we write $\mathsf{CMon}_m := \mathsf{CMon}_m(\mathcal{S})$, and refer to its objects as m-commutative monoids.

In the case m=-2, evaluating at pt, the unique object of $\mathsf{Span}(\mathcal{S}^{(-2)\mathsf{finColim}})$, gives an equivalence $\mathsf{CMon}_{-2}(\mathcal{C}) \simeq \mathcal{C}$.

\mathcal{R} Explication (CMon_m)

An object $X \in \mathsf{CMon}_m$ consists of an underlying space $X(\mathsf{pt})$, together with a collection of coherent operations for summation of m-finite families of points in it. Indeed, for $A \in \mathcal{S}_{m\mathsf{fin}}$, we have a canonical equivalence $X(A) \simeq X(\mathsf{pt})^A$. Given $A \to B$ in $\mathcal{S}_{m\mathsf{fin}}$, the

image of $A = A \to B$ is the restriction $X(\mathsf{pt})^B \to X(\mathsf{pt})^A$, while the image of $B \leftarrow A = A$ encodes *integration along fibers* $X(\mathsf{pt})^A \to X(\mathsf{pt})^B$.

Question

How can we see the restriction and integration along fibers perspectives above?

oxdiv Prop: Forgetful Functors between m-Commutative Monoids Cats

Let $-2 \leq m < \infty$ and let $\mathcal{C} \in \mathsf{Cat}_{\infty}^{(m+1)-\mathsf{finLim}}$. The restriction along the inclusion functor

$$\iota_m: \mathsf{Span}(\mathcal{S}_{m\mathsf{fin}}) \hookrightarrow \mathsf{Span}(\mathcal{S}_{(m+1)\mathsf{fin}})$$

induces a limit preserving functor

$$\iota_m^*:\mathsf{CMon}_{m+1}(\mathcal{C}) o\mathsf{CMon}_m(\mathcal{C})$$

Proof.

It suffices to prove that ι_m preserves m-finite colimits. By the description of colimits in spans it suffices to prove that $\mathcal{S}_{m\mathrm{fin}}\hookrightarrow\mathcal{S}_{(m+1)\mathrm{fin}}$ is stable under m-finite colimits. \square

② Question

How can we see that $\mathcal{S}_{m\mathsf{fin}}$ has m-finite colimits? If $A\overset{X}{\longrightarrow}\mathcal{S}$ is an m-finite diagram, then

$$\operatorname{\mathsf{colim}}_A X \simeq \operatorname{\mathsf{colim}}_{A/X} * \simeq A/X$$

How do we know that A/X is also m-finite? We know that A is m-finite and that all fibers of the Kan fibration $A/X \to A$ are m-finite, so it is also an m-finite map. Do m-finite maps compose?

The following answers the above question:

If f:A o B and g:B o C are m-finite, then so is their composite gf.

Proof.

Taking fibers, it suffices to show that if $f:A\to B$ is an m-finite map with B an m-finite space, then A is also m-finite. For each point $b\in B$, we have a homotopy fiber sequence $f^{-1}(b)\to A\to B$ where $f^{-1}(b)$ is also m-finite, by definition of m-finite maps. Thus, looking at the long exact sequence of homotopy groups for each $a\in f^{-1}(b)$, we see that A is also m-truncated, has finitely many path components, and has all homotopy groups begin finite, completing the proof.

We extend CMon_m to $m=\infty$ by defining for $\mathcal{C}\in\mathsf{Cat}_\infty^{\infty\mathsf{finLim}}$ the ∞ -category

$$\mathsf{CMon}_\infty(\mathcal{C}) := \mathsf{lim}_m \, \mathsf{CMon}_m(\mathcal{C})$$

with limit computed in Cat_{∞} . This is equivalent to

$$\mathsf{Fun}^{\infty\mathsf{finR}}(\mathsf{Span}(\mathcal{S}_{\infty\mathsf{fin}})^{op},\mathcal{C})$$

Consequently, when \mathcal{C} is presentable, $\mathsf{CMon}_m(\mathcal{C})$ is presentable for all m, and $\mathsf{CMon}_\infty(\mathcal{C})$ can then be described as a colimit of $\mathsf{CMon}_m(\mathcal{C})$ in Pr^L :

$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$

For $\mathcal{C} \in \mathbf{Pr}^L$, the forgetful functors

$$\iota_m^*:\mathsf{CMon}_{m+1}(\mathcal{C}) o\mathsf{CMon}_m(\mathcal{C})$$

admit left adjoints, and the colimit of the sequence

$$\mathcal{C} \simeq \mathsf{CMon}_{-2}(\mathcal{C}) \xrightarrow{\iota_{-1,!}} \mathsf{CMon}_{-1}(\mathcal{C}) \xrightarrow{\iota_{0,!}} \cdots$$

in Pr^L is $\mathsf{CMon}_\infty(\mathcal{C})$. In particular, $\mathsf{CMon}_\infty(\mathcal{C})$ is presentable.

The mapping spaces between two objects in an m-semiadditive ∞ -category have a canonical m-commutative monoid structure.

$oxed{\Sigma}$ Prop: Universality of $\mathsf{CMon}_m(-)$

Let $-2 \leq m \leq \infty$. For every $\mathcal{C} \in \mathsf{Cat}_{\infty}^{\oplus_m}$ and $\mathcal{D} \in \mathsf{Cat}_{\infty}^{\mathsf{mfin}}$, post-composition with evaluation at $\mathsf{pt} \in \mathcal{S}_{m\mathsf{fin}}$ induces an equivalence of ∞ -categories

$$\operatorname{\mathsf{Fun}}^{m\mathsf{fin}}(\mathcal{C},\operatorname{\mathsf{CMon}}_m(\mathcal{D}))\simeq\operatorname{\mathsf{Fun}}^{m\mathsf{fin}}(\mathcal{C},\mathcal{D})$$

As a consequence, for each m-semiadditive ∞ -category we have a unique lift of the Yoneda embedding to a CMon $_m$ -enriched Yoneda embedding:

□ Corollary: CMon_m-enriched Yoneda

Let $-2 \leq m \leq \infty$. For each $\mathcal{C} \in \mathsf{Cat}_\infty^{\oplus_m}$, there is a unique fully-faithful and m-semiadditive functor

$$\sharp^{\mathsf{CMon}_m} : \mathcal{C} \hookrightarrow \mathsf{Fun}(\mathcal{C}^{op}, \mathsf{CMon}_m)$$

whose composition with the forgetful functor $\mathsf{CMon}_m o \mathcal{S}$ is the Yoneda embedding.

Here a functor between m-semiadditive ∞ -categories is said to be m-semiadditive if it preserves m-finite limits.

Proof.

Taking $\mathcal{D}=\mathcal{S}$ in the universality of m-commutative monoids, we see that the ordinary Yoneda embedding

$$\ \, \sharp \, : \mathcal{C} \hookrightarrow \mathsf{Fun}^{m\mathsf{fin}}(\mathcal{C}^{op},\mathcal{S}) \subseteq \mathsf{Fun}(\mathcal{C}^{op},\mathcal{S})$$

lifts essentially uniquely to a fully-faithful m-finite limit preserving functor

Currying we obtain a functor

$$\mathsf{Hom}^{\mathsf{CMon}_m}(-,-):\mathcal{C}^{op} imes\mathcal{C} o \mathsf{CMon}_m$$

lifting $\mathsf{Map}_{\mathcal{C}}(-,-)$, and hence giving each mapping space a canonical m-commutative monoid structure.

Examples

Before moving into more technical work, let's review some examples of m-semiadditive ∞ -categories and the behaviour of cardinalities of m-finite spaces in them. We have the following universal example of an m-semiadditive ∞ -category:

Universal Case

For $-2 \leq m < \infty$ the symmetric monoidal ∞ -category of spans $\mathcal{C} = \mathsf{Span}(\mathcal{S}_{m\mathsf{fin}})$ is the universal m-semiadditive ∞ -category. For every $A \in \mathcal{S}_{m\mathsf{fin}}$, we have

$$|A|_{\mathsf{pt}} = (\mathsf{pt} \leftarrow A o \mathsf{pt}) \in \pi_0 \mathsf{Map}_{\mathsf{Span}(\mathcal{S}_{\mathit{mfin}})}(\mathsf{pt},\mathsf{pt})$$

Note that $\pi_0\mathsf{Map}_{\mathsf{Span}(\mathcal{S}_{mfin})}(\mathsf{pt},\mathsf{pt})$ is the set of isomorphism classes of m-finite spaces with semiring structure given by

$$|A| + |B| = |A \sqcup B|, \ |A| \cdot |B| = |A \times B|$$

Similarly, CMon_m is the universal *presentable m-semiadditive* ∞ -category. The Yoneda embedding induces a fully-faithful m-semiadditive symmetric monoidal functor

$$\mathsf{Span}(\mathcal{S}_{m\mathsf{fin}}) \hookrightarrow \mathsf{CMon}_m$$

taking an m-finite space A to the free m-commutative monoid on A.

Homotopy Cardinality

For a π -finite space A, the **homotopy cardinality** of A is the rational number

$$|A|_0 := \sum_{a \in \pi_0(A)} \prod_{n \geq 1} |\pi_n(A,a)|^{(-1)^n} \in \mathbb{Q}_{\geq 0}$$

We say an ∞ -category $\mathcal C$ is **semirational** if it is **0**-semiadditive (i.e. **0**-finite spaces are $\mathcal C$ -ambidextrous, which are contractible, empty, and discrete spaces) and for each $n \in \mathbb N$, multiplication by n is invertible in $\mathcal C$ (e.g. $\operatorname{Sp}_{\mathbb Q}$ or $\mathbb Q \operatorname{Mod}$). Here multiplication by n on an object n0 is given by the cardinality $|\mathbf p\mathbf t^{\sqcup n}|_{\mathcal C}$, which is the composite

$$C \overset{\Delta}{\longrightarrow} C^{\times n} \overset{\mathsf{Nm}_{\mathsf{pt}^{\sqcup n}}}{\overset{\sim}{\longleftarrow}} C^{\sqcup n} \overset{\nabla}{\longrightarrow} C$$

A semirational ∞ -category which admits all 1-finite colimits is automatically ∞ -semiadditive, and for every π -finite space A, we have that its cardinality is its homotopy cardinality:

$$|A|_{\mathcal{C}} = |A|_0 \in \mathbb{Q}_{\geq 0} \subseteq \mathsf{End}(\mathrm{id}_{\mathcal{C}})$$

This comes from the fact that the cardinality is additive, and for every fiber sequence of π -finite spaces $F \to A \to B$ where B is connected, |A| = |F||B|.

In Chromatic homotopy theory we often come across examples of ∞ -semiadditive ∞ -categories of higher height. For a given prime p, and $0 \le n < \infty$, let K(n) be the Morava K-theory spectrum of height n at the prime p. We have that the localizations $\operatorname{Sp}_{K(n)}$ and $\operatorname{Sp}_{T(n)}$ are ∞ -semiadditive. For n=0, $\operatorname{Sp}_{K(0)} \simeq \operatorname{Sp}_{T(0)} \simeq \operatorname{Sp}_{\mathbb{Q}}$, and the cardinalities recover the homotopy cardinality. Similarly, since $\operatorname{Sp}_{K(n)}$ is p-local for all n, if A is a π -finite space whose homotopy groups have cardinality prime to p, then the K(n)-local cardinality of A coincides

with the homotopy cardinality for all n by the previous example. However, this does not hold in general for π -finite spaces whose cardinality is not prime to p.

To study the K(n)-local cardinalities of π -finite spaces, it is useful to consider their image in Morava E-theory. For $n \geq 1$, let E_n be the Morava E-theory associated with some formal group of height n over $\overline{\mathbb{F}}_p$, viewed as an object of $\mathsf{CAlg}(\mathsf{Sp}_{K(n)})$. In particular, we have a (non-canonical) isomorphism

$$\pi_* E_n \cong \mathbb{W}(\overline{\mathbb{F}}_p)[[u_1, \dots, u_{n-1}]][u^{\pm 1}], \;\; |u_i| = 0, \;\; |u| = 2$$

TO Chromatic Cardinality

The ∞ -category $\Theta_n:=\operatorname{Mod}_{E_n}(\operatorname{Sp}_{K(n)})$ is ∞ -semiadditive by Theorem 5.3.1 in6, and hence we can consider cardinalities of π -finite spaces in π_0E_n . The p-typical height n cardinality of a π -finite space A is defined to be

$$|A|_n:=|A|_{\Theta_n}\in\pi_0E_n$$

For n=0 we can identify $\overline{\mathbb{Q}}$ with $\pi_0 E_0$, and so can recover the homotopy cardinality. For n>0, let $\widehat{L}_p A:= \operatorname{\mathsf{Map}}(B\mathbb{Z}_p,A)$ be the p-adic free loop space of A. It turns out that $|A|_n\in\pi_0 E_n$ belongs to the subring $\mathbb{Z}_{(p)}\subseteq\pi_0 E_n$ and satisfies $|A|_n=|\widehat{L}_p A|_{n-1}$. Applying this inductively we see that

$$|A|_n = |\mathsf{Map}(B\mathbb{Z}_p^n,A)|_0 \in \mathbb{Z}_{(p)}$$

for the p-typical height n cardinality in terms of the homotopy cardinality. If A is a p-space, then $\widehat{L}_pA\simeq LA:={\sf Map}(S^1,A)$ coincides with the ordinary loop space.

Question

How can we show that $\widehat{L}_pA\simeq LA$ when A is a p-space? Hint: First consider the universal examples $K(\mathbb{Z}/p,n)$.

The following gives another family of examples of higher semiadditive ∞ -categories:

$oxed{\Sigma}$ Prop: $\mathsf{Cat}^{m\mathsf{finColim}}_\infty$ is m-semiadditive

For every $-2 \leq m \leq \infty$ the ∞ -category $\mathsf{Cat}_\infty^{m\mathsf{finColim}}$ is m-semiadditive.

The Categorical Cardinality

Let $-2 \leq m \leq \infty$ and let $\mathcal{C} \in \mathsf{Cat}_\infty^{m\mathsf{finColim}}$. For every m-finite space A, the m-semiadditive structure of $\mathsf{Cat}_\infty^{m\mathsf{finColim}}$ gives rise to a functor $|A|_\mathcal{C}:\mathcal{C} \to \mathcal{C}$. When $m < \infty$, $|A|_\mathcal{C} \simeq \mathsf{colim}_A \Delta_{(-)}$ is given by taking the constant colimit on A. Since $\mathsf{Cat}_\infty^{\infty\mathsf{finColim}} \to \mathsf{Cat}_\infty^{m\mathsf{finColim}}$ preserves limits, and hence is m-semiadditive, the same claim holds for $m = \infty$.

Conversely, the m-semiadditive structure on $\mathsf{Cat}_\infty^{m\mathsf{finLim}}$ is given by taking limits of constant diagrams.

\blacksquare (co)Cartesian m-commutative Monoid Structure

For $\mathcal{C}\in\mathsf{Cat}^{m\mathsf{finColim}}_\infty$, since $\mathcal{S}_{m\mathsf{fin}}$ is freely generated from a point under m-finite colimits, we have

$$\mathsf{Map}^{\mathsf{mfinL}}(\mathcal{S}_{m\mathsf{fin}},\mathcal{C}) \simeq \mathsf{Map}(\mathsf{pt},\mathcal{C}) \simeq \mathcal{C}^{\simeq}$$

and the resulting m-commutative monoid structure on \mathcal{C}^{\simeq} is referred to as the **cocartesian structure**. Dually, for $\mathcal{C} \in \mathsf{Cat}_{\infty}^{m\mathsf{finLim}}$, we have

$$\mathsf{Map}^{m\mathsf{finR}}(\mathcal{S}^{op}_{m\mathsf{fin}},\mathcal{C})\simeq \mathsf{Map}(\mathsf{pt},\mathcal{C})\simeq \mathcal{C}^{\simeq}$$

and the resulting m-commutative monoid structure on \mathcal{C}^{\simeq} is referred to as the **cartesian** structure.

The full subcategory $\mathsf{Cat}_\infty^{\oplus_m} \subseteq \mathsf{Cat}_\infty^{m\mathsf{finColim}}, \mathsf{Cat}_\infty^{m\mathsf{finLim}}$ is closed under colimits, and in particular is m-semiadditive, since the inclusion admits the right adjoint $\mathsf{CMon}_m(\mathcal{D})$.

Extra Examples of Ambidexterity

Similarity between Ambidexterity and Traces

Recall that for a symmetric monoidal ∞ -category $(\mathcal{C},\otimes,1)$ with subcategory $\mathcal{C}^{\diamond}\subseteq\mathcal{C}$ spanned by dualizable objects, every $X\in\mathcal{C}^{\diamond}$ admits a **trace** or **Euler characteristic** given by the composite

$$\chi_X := (1 \stackrel{\eta}{ o} X \otimes X^ee \stackrel{\simeq}{ o} X^ee \otimes X \stackrel{\epsilon}{ o} 1)$$

where the symmetrizer in the center can be thought of as the analogue of our norm map in this context. For example, if $(\mathcal{C}, \otimes, 1) = (\mathsf{Sp}, \otimes, \mathbb{S})$, and $X \in \mathsf{Sp}^{\diamond} = \mathsf{Sp}^{\omega}$, then $\chi_X \in \pi_0 \mathbb{S} = \mathbb{Z}$ is the **Euler characteristic** of the finite space X (here finite is in the sense of ω -compactness, which is equivalent to X being weakly equivalent to a finite CW complex).

On the other hand, in the context of $\mathcal C$ -ambidexterity for a π -finite map $A \overset{q}{\to} B$ and a (co)complete ∞ -category $\mathcal C$ (or at least finitely complete with sufficient limits and colimits so the following adjunctions exist), we look at the adjunctions $q_! \dashv q^* \dashv q_* : \mathcal C^B \to \mathcal C^A$ where q^* is pullback, $q_!$ is left Kan extension along $q_!$ and q_* is right Kan extension along $q_!$. When $B=\operatorname{pt}$ is the point, q^* becomes the diagonal, $q_!=\operatorname{colim}_A$, and $q_*=\operatorname{lim}_A$. The Norm map is then a natural comparison map (which need not always exist)

$$q_! \stackrel{\mathsf{Nm}_q}{\Longrightarrow} q_*$$

which in the case of \mathcal{C} -ambidexterity of q is an equivalence, along with all the associated norm maps for diagonal $A \to A \times_B A$ of q. The cardinality for a \mathcal{C} -ambidextrous map q then defines an analogue of the trace in the case of symmetric monoidal ∞ -categories

$$\operatorname{id}_{\mathcal{C}} \stackrel{\eta}{ o} q_* q^* \stackrel{\operatorname{\mathsf{Nm}}_q q^*}{\stackrel{\simeq}{ o}} q_! q^* \stackrel{\epsilon}{ o} \operatorname{id}_{\mathcal{C}}$$

For example, if $\mathcal{C} = \mathsf{Sp}$ is the infinity category of spectra, then we can use the natural equivalence

$$\mathsf{Fun}^L(\mathsf{Sp},\mathsf{Sp}) \xrightarrow[\sim]{-\circ \Sigma^\infty_+} \mathsf{Fun}^L(\mathcal{S},\mathsf{Sp}) \xrightarrow[\sim]{\mathsf{ev}_{\mathsf{pt}}} \mathsf{Sp}$$

(c.f. <u>Universality of Multiplicative Infinite Loop Space Machines (Gepner, Groth, Nikolaus) > 5 eab9d) to observe that id_{Sp} being cocontinuous means we can write it as $\mathbb{S} \otimes -$, so that</u>

$$\pi_0\mathsf{End}(\mathrm{id}_\mathsf{Sp})\cong\pi_0\mathsf{End}_\mathsf{Sp}(\mathbb{S})=\mathbb{Z}$$

Thus, for any π -finite map, the Sp-cardinality of $q:A\to B$ corresponds to an integer, where for $X\in \operatorname{Sp}, |q|_X:X\to X$ is given by the composite

$$X \stackrel{\simeq}{\longrightarrow} \mathbb{S} \otimes X \stackrel{(|q|_{X^{\centerdot}}) \otimes X}{\longrightarrow} \mathbb{S} \otimes X \stackrel{\simeq}{\longrightarrow} X$$

where we're identifying $|q|_X$ with the integer value.

Examples in Representation Theory

To begin let's consider the case of G a finite group so that A=BG is a 1-finite space, and take $\mathcal{C}=R$ Mod for a commutative unital ring R. Then $\mathcal{C}^A=R[G]$ Mod is the category of R-valued G-representations for a commutative ring R. The map $q^*:R$ Mod $\to R[G]$ Mod is given by sending an R-module to the trivial representation associated to it. On the other hand, $q_!M=\operatorname{colim}_{BG}M=M_G=M/(m\sim gm)$ sends a G-representation to the R-module of G-orbits, and $q_*M=\lim_{BG}M=M^G$ sends a G-representation to the R-module of G-fixed points. We then have a natural norm map

$$\mathsf{Nm}_G: M_G o M^G, \; [m] \mapsto \sum_{g \in G} g \cdot m$$

The kernel of this map consists of those G-orbits such that $\sum_{g\in G}g\cdot m=0$, while the image always at least contains $|G|M^G$. The norm map fits in the **Tate cohomology groups** which are defined by

$$\widehat{H}^i(G;M) := egin{cases} H^i(G;M) & i \geq 1 \ & \mathsf{coker}(\mathsf{Nm}_G) & i = 0 \ & \mathsf{ker}(\mathsf{Nm}_G) & i = -1 \ & H_{-i-1}(G;M) & i \leq -2 \end{cases}$$

Recall here that $(-)^G = \operatorname{Hom}_{R[G]}(R,-)$, and that $H^n(G;-) := \mathbb{R}^n \operatorname{Hom}_{R[G]}(R,-) = \operatorname{Ext}_{R[G]}^n(R,-)$ are the right derived functors of the fixed point functor, while $(-)_G = R \otimes_{R[G]} -$, and $H_n(G;-) = \mathbb{L}^n(R \otimes_{R[G]} -) = \operatorname{Tor}_n^{R[G]}(R,-)$ are the left derived functors. We can also describe the group cohomology as the cohomology of the cochain complex associated to the simplicial R-module $\operatorname{Fun}(G^{(-)},M)$, with face operators given by multiplying arguments internally, or acting on the left/right (with right action being trivial), and degeneracies given by inserting identities.

Example

Consider the case of $G=\mathbb{Z}/p$ and $R=\mathbb{Z}$. Then $\mathsf{Nm}_{\mathbb{Z}/p}:\mathbb{Z}\to\mathbb{Z}$ is just multiplication by p, implying that $\ker(\mathsf{Nm}_{\mathbb{Z}/p})=0$ but $\mathsf{coker}(\mathsf{Nm}_{\mathbb{Z}/p})=\mathbb{Z}/p$.

Example

If R is a commutative ring and G is a group with $|G| \in R^{\times}$, then $\operatorname{Nm}_G : R \to R$ is multiplication by |G|, and hence is an isomorphism. In particular, the norm map for any constant representation is an isomorphism.

Example

If $G=\mathbb{Z}/4$, $R=\mathbb{C}$, and $M=\mathbb{C}$ with the action given by the inclusion $\mathbb{Z}/4 \xrightarrow{e^{i\pi t/2}} S^1 \subseteq \mathbb{C}$, then $M_G=\{0\} \cup \bigcup_{t \in [0,\pi/2)} e^{2\pi i t} \mathbb{R}_+$ is the space of homotopy orbits, while $M^G=\{0\}$ is the space of homotopy fixed points, so we would never have the norm map being an isomorphism.

Examples in Stable Homotopy Theory

Let G be a finite group and let $q:BG\to *$ be the unique 1-finite map of spaces. Let $\mathcal{C}=\operatorname{Sp}$ be the ∞ -category of spectra so that $q_!=(-)_{hG}$ is the homotopy orbits functor and $q_*=(-)^{hG}$ is the homotopy fixed points functor. Equivalently, $q_*=\operatorname{Map}_{BG}(EG,-)$ and $q_!=EG\otimes_{BG}-$, where here we're using that Sp is tensored and cotensored over \mathcal{S} , being complete and cocomplete. Explicitly, for a spectrum $X, q_*X=F^G(EG_+,X)$ is the G-equivariant mapping spectrum and $q_!X=(\Sigma_+^\infty EG\otimes X)/\Sigma_+^\infty BG$ with diagonal action.

In this situation the Tate construction measures the defect for BG being Sp-ambidextrous:

$$X^{tG} = \mathsf{hocofib}(X_{hG} \overset{\mathsf{Nm}_G}{\longrightarrow} X^{hG})$$

Here for M a $\mathbb{Z}[G]$ -module, the Tate construction HM^{tG} has homotopy groups recovering the Tate cohomology

$$\pi_*(HM^{tG})\cong \widehat{H}^{-*}(G;M)$$

References

- 1. Carmeli, S., Schlank, T.M., Yanovski, L.: Ambidexterity and Height, http://arxiv.org/abs/2007.13089, (2020) (2020) (2020)<a href="http://arxiv.org/abs/2007.130
- 2. Cnossen, Bastiaan, Tobias Lenz, and Sil Linskens. "Parametrized (Higher) Semiadditivity and the Universality of Spans." arXiv:2403.07676. Preprint, arXiv, September 27, 2024. https://doi.org/10.48550/arXiv.2403.07676. ←
- 4. Riehl, Emily, and Dominic Verity. *Elements of* ∞-*Category Theory*. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2022. https://doi.org/10.1017/9781108936880. ←