
Introduction/Motivation
These notes are for a 30~40 minute talk on semi-additivity as appearing in Sections 2.1 and 2.2

of the paper Ambidexterity and Height[1], which was given as part of an Ambidexterity seminar
at UIUC in Fall 2025. In the paper Carmeli, Schlank, and Yanovski use the theory of higher
semi-additivity to abstract and generalize the notion of height appearing in chromatic homotopy
theory. The vn-self maps used in the definition of chromatic height are instead replaced by the
cardinalities of certain π-finite spaces (to be discussed soon).

Further, the semi-additive height filtration introduced in the paper refines the inclusion
SpK(n) ⊆ SpT (n), which is now known to be strict for n ≥ 0. We also pull some ideas from later

work due to Cnossen et al. on Parameterized Semi-additivity[2], and earlier work on applications
of ambidexterity to chromatic homotopy theory[3].

Let's begin by recalling the notation used in the paper:

Conventions:

Introduction to Semiadditivity

Catst∞ ⊆ Cat∞ will denote the sub-∞-category spanned by stable ∞-categories and exact
functors. Similarly, PrLst ⊆ PrL is the full-subcategory spanned by stable presentable ∞-
categories.
A space A ∈ S is

m-finite for m ≥ −2, if m = −2 and A is contractible, or m ≥ −1, the set π0A is
finite, and all fibers of the diagonal Δ : A → A × A are (m − 1)-finite5
π-finite or ∞-finite, if it is m-finite for some integer m ≥ −2. For −2 ≤ m ≤ ∞ we
write Smfin ⊆ S for the full subcategory spanned by m-finite spaces.
p-space, for p ∈ Z a prime, if all the homotopy groups of A are p-groups.

Given an ∞-category C ∈ Cat∞,

For every map of spaces A → B, we write q∗ : CB → C
A for the pullback functor and

q! and q∗ for the left and right adjoints of q∗ (i.e. given by left and right Kan extension,
respectively), whenever they exist

q

Under the equivalence S/pt ≃ S, we will identify a space A with its map to the terminal
object, so that above we would write A∗ instead of q∗ for q : A → pt, and similarly for
the others
For each X ∈ C, we write X[A] := A!A

∗X, and write ∇ : X[A] → X for the co-unit
(called the fold). Similarly, we write X A := A∗A∗X and write Δ : X → X A for the
unit (called the diagonal)



The importance of m-finite maps and spaces lies in their use as indexing ∞-categories for
diagrams that we are interested in comparing limits and colimits of. Specifically, the m in m-
semiadditivity indicates the size of the π-finite spaces A for which we have norm maps

NmA : colimA ⇒ limA

which are equivalences.

Semiadditivity
Let's begin with the basic notion of ambidexterity in chromatic homotopy theory.

Given a map of spaces A → B, and b ∈ B, we write q−1(b) for the homotopy fiber of q over
b. We say that:

q

An ∞-category C admits q-limits (resp. q-colimits) if it admits all limits (resp. colimits)
of shape q−1(b) for all b ∈ B

A functor F : C → D preserves q-limits (resp. preserves q-colimits) if it preserves all
limits (resp. colimits) of shape q−1(b) for all b ∈ B

For every −2 ≤ m ≤ ∞

m-finite (co)limits refer to (co)limits indexed by an m-finite space

We write CatmfinColim
∞ ⊆ Cat∞ (resp. CatmfinLim ⊆ Cat∞) for the subcategory spanned

by ∞-categories admitting m-finite colimits (resp. limits) and functors preserving them.
For C,D ∈ CatmfinColim

∞  (resp. ∈ CatmfinLim
∞ ) We wrote Funm−finL(C,D) (resp.

FunmfinR(C,D)) for the full subcategory of Fun(C,D) spanned by m-finite colimit (resp.
limit) preserving functors
We write Cat⊕-m

∞ ⊆ Cat∞ for the subcategory spanned by the m-semiadditive ∞-
categories and m-semiadditive (i.e. m-finite colimit preserving) functors.
Given an ∞-operad O, we say C ∈ AlgO(Cat∞) is compatible with K-indexed colimits
for some collection of ∞-categories K if the underlying ∞-category C admits K-
indexed colimits and every tensor operation ⊗ : Cn → C of O preserves K-indexed
colimits in each variable
An m-semiadditively O-monoidal ∞-category is an O-monoidal m-semiadditive ∞-
category which is compatible with m-finite colimits Q. What does this mean?
If C is a monoidal ∞-category and D is an ∞-category enriched in C, we write
HomC

D(X, Y ) for the C-mapping object of X, Y ∈ D. When C is closed, we write
HomC(X, Y ) for HomC

C(X, Y ). For every ∞-category C we write
HomS

C
(X, Y ) = MapC(X, Y ).

Ambidexterity of π-finite Maps

Let C ∈ Cat∞. A π-finite map A → B is called:q



A (−2)-finite map, i.e. an equivalence, is always C-ambidextrous. If q is m-finite, then the
diagonal

A A ×B A

is (m − 1)-finite and the ambidexterity of Δq allows in turn the definition of Nmq.

The property of being C-ambidextrous is preserved by pullbacks and determined by its fibers.
Since the fibers of the diagonal A → A × A are path spaces of A, A is weakly C-ambidextrous
if and only if the path spaces of A are C-ambidextrous. This begins the inductive construction
since the path-space reduces from an m-finite space to an (m − 1)-finite space.

Proof Idea.
From the discussion above, we can assume wlog that B = pt. The forward implication is
immediate due to the norm equivalence, so it suffices to show that if (1)-(3) hold, then the norm
map is an equivalence.
□ ***

1. weakly C-ambidextrous if it is an equivalence, or Δq : A → A ×B A is C-
ambidextrous

2. C-ambidextrous if it is weakly C-ambidextrous, C admits all q-limits and q-colimits,
and the norm map Nmq : q! → q∗ is an equivalence.

Δq

−→

Prop: Characterization of C-Ambidextrous Morphism

Let C be an ∞-category and let A → B be a π-finite map. The map is C-ambidextrous if
and only if the following hold:

q

1. q is weakly C-ambidextrous
2. C admits all q-limits and q-colimits
3. Either q∗ preserves all q-colimits or q! preserves all q-limits.

Prop: Closure of Ambidexterity under ∞-category constructions

Let C be an ∞-category and let A be a π-finite C-ambidextrous space. The space A is
also D-ambidextrous for

(1) D = Cop

(2) D = Fun(I , C) for I  an ∞-category
(3) D ⊆ C containing the final object and closed under Ωk

aA-limits for all a ∈ A and
k ≥ 0



Note: Here Ωk
aA is the k-fold based loop space at a ∈ A.

The first two properties are classical, while the last two are dual and follow from the inductive
construction of norm maps.

Intuition for Induction: For a space A and a diagram F : A → C, to specify a norm map
NmA : colimAF → limAF  is to specify a homotopy coherently compatible collection of
morphisms Nma,b

A
: F(a) → F(b), for a, b ∈ A. F  always provides a family of candidates for

these maps, Fa,b : MapA(a, b) → MapC(F(a), F(b)), but a-priori there is no coherent choice
for them which can be made. But, if we can integrate over the spaces MapA(a, b), we can just
take

Nm
a,b
A

= ∫
Aa,b

Fa,b

When F  is constant on some object X, then the Norm map is the same as a map of spaces
A × A → MapC(X, X), where the above construction specializes to Nma,b

A = |MapA(a, b)|X.

(4) D ⊆ C containing the initial object and closed under Ωk
aA-colimits for all a ∈ A

and k ≥ 0.

Important

The main feature of ambidexterity is that it allows us to integrate families of morphisms in
C. That is, given a C-ambidextrous map A → B and X, Y ∈ CB, we have a map

∫
q

: MapCA(q∗X, q∗Y ) → MapCB(X, Y )

which can be given by the composite

MapCA(q∗X, q∗Y ) → MapCB(q!q
∗X, q!q

∗Y ) MapCB(q∗q∗X, q!q
∗Y ) MapCB

When B = pt we can think of an element of MapCA(q∗X, q∗Y ) as a map

A → MapC(X, Y ), and ∫
A

f ∈ MapC(X, Y ) as the sum of f over points of A. Explicitly,
the identification of mapping spaces comes from the equivalences

MapCA(q∗X, q∗Y ) ≃ MapC(X, q∗q∗Y ) ≃ limAMapC(X, Y ) = MapC(X, Y )A

q

q! −∘Nmq

←−
≃

ϵ∘−∘η
−→

f

Important

The initial claim comes from the natural equivalences



More generally, if C has all A-shaped (co)limits, so that we have functors
colimA, limA : CA → C, then the natural equivalences we want are given by using adjoints and
(co)continuity of the diagonal:

Nat(colimA, limA) Nat(ΔAcolimA, idCA) Nat(colimA(ΔA ∘ −), idCA) Nat(ΔA ∘ −, ΔA)

Thus, a family of norms NmA : colimA ⇒ limA is equivalent to a natural transformation
(ΔA ∘ −) ⇒ ΔA : CA → (CA)A.

Similarly, if C has all q-shaped (co)limits for q : A → B, so that q! ⊣ q∗ ⊣ q∗ exist, then we have
natural maps

Nat(q!, q∗) Nat(q∗q!, idCA) Nat((π2)!π
∗
1, idCA) Nat(π∗

1, π∗
2)

where α : π∗
1q∗ ⇒ π∗

2q∗ is the natural equivalence coming from
π∗

1q∗ ≃ (qπ1)∗ = (qπ2)∗ ≃ π∗
2q∗, and the center map uses the mate calculus on this

transformation to obtain BCL
q∗,π∗

2
(α) : (π2)!π

∗
1 ⇒ q∗q!. If this Beck-Chevalley transformation is

an equivalence, then it follows that the data of a norm Nmq : q! ⇒ q∗ is equivalent to the data
of a natural transformation π∗

1 ⇒ π∗
2 : CA → CA×BA. Since the square in which α appears is a

homotopy pullback square of ∞-groupoids, and hence we can assume without loss of
generality that q is a Kan fibration, the square is exact, and hence it satisfies the Beck-
Chevalley condition (c.f. Chapter 13 of[4]).

Inductive Approach: If A is an m-finite space, then the path spaces MapA(a, b) are (m − 1)-
finite. Thus, if inductively we have invertible canonical norm maps NmB for all (m − 1)-finite
spaces B, then we obtain a canonical way to integrate (m − 1)-finite families of morphisms,

MapC(colimAF , limAF) MapCA(F , limAF) ≃ MapCA(F , limAF) Map(CA)A(F , F)

where F : A → CA is the whiskering of F ∘ π1 : A × A → C, while F : A → CA is the
whiskering of F ∘ π2 : A × A → C. Thus, we have a natural equivalence

MapC(colimAF , limAF) MapCA×A(F ∘ π2, F ∘ π1)

Thus, the data of a map colimAF → limAF  is equivalent to the data of a map of simplicial
sets α : [1] × A × A → C such that α0 = F ∘ π2 and α1 = F ∘ π1.

Further, in the case when F = X is the constant functor at some X ∈ C. In this case, the
data of a map colimAX → limAX is equivalent to the data of a map of simplicial sets
αX : [1] × A × A → C such that αX|∂[1]×A×A = X. A natural family of such
transformations is then a map of simplicial sets α : [1] × A × A × C → C such that
α|∂[1]×A×A×C = πC.

≃
−→
–
–≃
−→
–
–

–
–

≃
−→

–

–

≃
−→

≃
−→

≃
−→

≃
−→

−∘BCL
q∗,π∗

2
(α)

−→
≃

−→



which allows us to define norm maps for all m-finite spaces. Whether all these new norm maps
are isomorphisms is now a property, which if holding let's us continue the induction:

As a first example, in the m = 0 step A is equivalent to a set, so we can replace A by a set if
necessary. Then X : A → C is precisely a set of objects (Xa)a∈A in C indexed by those in A,
and ΔA,!X : A × A → C is the matrix of objects (Xi,j)i,j∈A with Xa,a = Xa and Xa,b = 0C
when a ≠ b, and similarly ΔA,∗X : A × A → C is the matrix of objects (X ′

i,j)i,j∈A with
X ′

a,a = Xa and X ′
a,b = 1C with a ≠ b. On the other hand, π∗

1X = (Xa)a,b∈A and

(m = −2) We define every ∞-category to be (−2)-semiadditive. Recall that the (−2)-finite
spaces are the contractible ones, and the canonical norm map Nmpt is hence an
equivalence, being equivalent to the identity transformation on idC. This just says we can
canonically sum a one point family of maps.
(m = −1) The only non-contractible (−1)-finite space is A = ∅. The associated norm map
is the unique map

Nm∅ : 0C → 1C

from the initial object to the terminal object of C, which always exists. Thus, C is (−1)-
semiadditive if and only if it is pointed. This allows integration of empty families of
morphisms, which is to say that for any X, Y ∈ C, we get a canonical zero map given by the
composition

X → 1C 0C → Y
≃

←−

(m ≥ 0) Let A be an m-finite space, and suppose C is (m − 1)-semiadditive. Then in

particular we have an equivalence NmΔA
: ΔA,! ΔA,∗ : CA → CA×A, which corresponds

to a wrong-way co-unit νΔA
: Δ∗

AΔA,! ⇒ id and a wrong-way unit μΔA
: id ⇒ ΔA,∗Δ∗

A, so
that we can define the map

π∗
1 → ΔA,∗Δ∗

Aπ∗
1 ≃ ΔA,∗ ΔA,! ≃ ΔA,!Δ

∗
Aπ∗

2 π∗
2

which from the discussion preceding the induction is equivalent to a norm map
Nmq : q! ⇒ q∗, which is given by

q! q∗q∗q! q∗(π2)!π
∗
1 → q∗(π2)!ΔA,∗Δ∗

Aπ∗
1 q∗(π2)!ΔA,!Δ

∗
Aπ∗

2 q∗(

where the Beck-Chevalley transformation can be written as the composite

BCL
q∗,π∗

2
(α) : (π2)!π

∗
1 (π2)!π

∗
1q∗q! (π2)!π

∗
2q∗q! q∗q!

≃
=⇒

η NmΔA
←−

≃

ϵΔA
−→

η⋆q!
=⇒

q∗BC
L
q∗,π∗

2
(id)

←−
≃

η NmΔA
←−

≃

q∗(π2)!ϵ
−→

(π2)!π
∗
1⋆uq∗

=⇒
(π2)!⋆α⋆q!

=⇒
cπ2⋆q∗q!

=⇒



π∗
2X = (Xb)a,b∈A are matrices with constant rows and constant columns, respectively. The

composite

(Xa)a,b∈A → (X ′
a,b)a,b∈A (Xa,b)a,b∈A → (Xb)a,b∈A

is given precisely by the matrix of maps fa,b : Xa → Xb with fa,a = idXa
, while for a ≠ b,

fa,b : Xa → 1C 0C → Xb is the unique composite through the zero object. The norm map is
then the composite

∐
a∈A

Xa → ∏
b∈A

∐
a∈A

Xa → ∏
b∈A

∐
a∈A

X ′
a,b ∏

b∈A

∐
a∈A

Xa,b → ∏
b∈A

∐
a∈A

Xb → ∏
b∈A

Xb

As a second example, if we're doing the m = 1 step with A a connected 1-finite space, so that
A ≅BG for some finite group G ≅π1(A), then ΔA,!X ≃ ∐g∈G X ≃ ∏g∈G X ≃ ΔA,∗X.
Write A : A → pt for the unique map to the point. Further, A!X = XhG and A∗X = X hG for
X ∈ CBGare the homotopy orbits and fixed points, respectively, while A∗Y = Y  for Y ∈ C is an
object with trivial action, π∗

1X = X is given G × G-action with trivial right action component,
and similarly for π∗

2X = X. Finally, if Z ∈ CBG×BG is a G × G-C object, then (π1)!Z = ZhG×1

is the G-space given by taking homotopy orbits with respect to the first factor, and
(π1)∗Z = Z hG×1 is the G-space given by taking homotopy fixed points with respect to the first
factor. Now, the composite

π∗
1X ∏

g∈G

X ∐
g∈G

X π∗
2X

is given by summing over orbits. Finally, the first map XhG → (XhG)hG is given by sending the
orbits of a G-space to the homotopy fixed points of the homotopy orbits with trivial action, and
the last map (X

hG
)hG → X hG is given by sending the the homotopy fixed points of the

homotopy orbits of the original G-object viewed itself as a G-object with trivial action, to the
homotopy fixed points of the underlying object. Thus, the resulting norm map is precisely the
classical orbit map:

XhG (XhG)hG (⨁
g∈G

X)
hG

hG

(X
hG

)hG
X hG

given informally by [x] ↦ ∑g∈G g ⋅ x.

Integrating the identity morphism yields the notion of C-cardinality.

≃
←−

! ≃
←−

!

≃
←−

Δ
−→

≃
←−

∇
−→

–

–

≃
−→
–

Δ
−→

⎛

⎝

⎞

⎠
Δ

−→–
≃

−→

C-cardinality

Let C ∈ Cat∞ and let A → B be a C-ambidextrous map. We have a natural

transformation idCB idCB  given by the composition

q

|q|C
−→



Note that for a given object X ∈ C, X X is exactly ∫
A

idX.

Note: For a C-ambidextrous space A, the A-limits and A-colimits in C are canonically
isomorphic, which implies the following:

Using Fubini's theorem for iso-normed functors, we can obtain the following additivity result for
cardinalities. In the current context Fubini's Theorem for iso-normed functors says that if
A → B → C are π-finite maps of π-finite spaces such that p and q are both C-ambidextrous,
then ∫

qp
 is homotopic to the composite

MapCA(p∗q∗X, p∗q∗Y ) MapCB(q∗X, q∗Y ) MapCC (X, Y )

Intuition: This says that the cardinality of the total space A is the sum over B of the
cardinalities of the fibers Ab of q. To see how this is a consequence of Fubini we can re-write
both sides using the integral notation to give

idCB q∗q∗ q!q
∗ → idCB

For a C-ambidextrous space A, we write idC idC and call |A|C the C-cardinality of A
.

u∗
−→

Nmq

←−
≃

c!

|A|C
−→

|A|X

−→

Motivating Example

Let C be a semiadditive ∞-category. For a finite set A, viewed as an 0-finite space, the
operation |A|C is simply the multiplication by the natural number which is the usual
cardinality of A.

Prop: Preservation of Limits and Colimits for Ambidextrous Spaces

Let C,D ∈ Cat∞, and let A be a C- and D-ambidextrous space. A functor F : C → D

preserves all A-limits if and only if it preserves all A-colimits. Moreover, if F  preserves all
A-(co)limits, then F(|A|C) ≃ |A|D.

p q

∫
p

−→
∫

q

−→

Prop: Additivity of Cardinalities

Let C ∈ Cat∞ and A → B a map of spaces. If B and q are C-ambidextrous, then A is C-
ambidextrous and for every X ∈ C,

|A|X = ∫
B

|q|B∗X

q



∫
A

idA∗X ≃ ∫
B

∫
q

idq∗B∗X

We can interpret this as saying

|A × B|C = |A|C|B|C ∈ End(idC)

and

|A|C = ∐
a∈π0A

|Aa|C ∈ End(idC)

When C is monoidal and the tensor product preserves A-colimits in each variable, Lemma 3.3.4

of[3-1] implies that |A|X can be identified with |A|𝟙 ⊗ X, where 𝟙 is the monoidal unit.
Additionally, if R ∈ Alg(C), then |A|R : R → R can be identified with multiplication by the
image of |A|𝟙 ∈ π0𝟙 := π0Map(𝟙, 𝟙) under the unit map π0𝟙 → π0R := π0Map(𝟙, R), which
we also denote by |A|R.

Higher Commutative Monoids
We refer to an ∞-category as m-semiadditive if all m-finite spaces are ambidextrous. For
m = 0 we recover the ordinary notion of a semiadditive ∞-category. Note that if C ⊆ D is a full
subcategory of an m-semiadditive ∞-category, then if C is either stable under m-finite colimits
or m-finite limits, then it is stable under both, and it is m-semiadditive itself.

In the case m = −2, evaluating at pt, the unique object of Span(S (−2)finColim), gives an
equivalence CMon−2(C) ≃ C.

m-Commutative Monoids

Let −2 ≤ m < ∞. For C ∈ CatmfinLim
∞ , the ∞-category of m-commutative monoids in C

is given by

CMonm(C) := FunmfinR(Span(Smfin)
op, C)

When C = S we write CMonm := CMonm(S), and refer to its objects as m-commutative
monoids.

Explication (CMonm)

An object X ∈ CMonm consists of an underlying space X(pt), together with a collection
of coherent operations for summation of m-finite families of points in it. Indeed, for
A ∈ Smfin, we have a canonical equivalence X(A) ≃ X(pt)A. Given A → B in Smfin, the



Proof.
It suffices to prove that ιm preserves m-finite colimits. By the description of colimits in spans it
suffices to prove that Smfin ↪ S(m+1)fin is stable under m-finite colimits.
□

The following answers the above question:

image of A == A → B is the restriction X(pt)B → X(pt)A, while the image of
B ← A == A encodes integration along fibers X(pt)A → X(pt)B.

Question

How can we see the restriction and integration along fibers perspectives above?

Prop: Forgetful Functors between m-Commutative Monoids Cats

Let −2 ≤ m < ∞ and let C ∈ Cat(m+1)−finLim
∞ . The restriction along the inclusion functor

ιm : Span(Smfin) ↪ Span(S(m+1)fin)

induces a limit preserving functor

ι∗
m : CMonm+1(C) → CMonm(C)

Question

How can we see that Smfin has m-finite colimits? If A S is an m-finite diagram, then

colimA X ≃ colimA/X∗ ≃ A/X

How do we know that A/X is also m-finite? We know that A is m-finite and that all fibers
of the Kan fibration A/X → A are m-finite, so it is also an m-finite map. Do m-finite maps
compose?

X
−→

Prop: m-finite Maps Compose

If f : A → B and g : B → C are m-finite, then so is their composite gf.



Proof.
Taking fibers, it suffices to show that if f : A → B is an m-finite map with B an m-finite space,
then A is also m-finite. For each point b ∈ B, we have a homotopy fiber sequence
f −1(b) → A → B where f −1(b) is also m-finite, by definition of m-finite maps. Thus, looking at
the long exact sequence of homotopy groups for each a ∈ f −1(b), we see that A is also m-
truncated, has finitely many path components, and has all homotopy groups begin finite,
completing the proof.
□

We extend CMonm to m = ∞ by defining for C ∈ Cat∞finLim
∞  the ∞-category

CMon∞(C) := limm CMonm(C)

with limit computed in Cat∞. This is equivalent to

Fun∞finR(Span(S∞fin)
op, C)

Consequently, when C is presentable, CMonm(C) is presentable for all m, and CMon∞(C) can
then be described as a colimit of CMonm(C) in PrL:

The mapping spaces between two objects in an m-semiadditive ∞-category have a canonical
m-commutative monoid structure.

Lemma: CMon∞ as Colimit in Pr
L

For C ∈ PrL, the forgetful functors

ι∗
m : CMonm+1(C) → CMonm(C)

admit left adjoints, and the colimit of the sequence

C ≃ CMon−2(C) CMon−1(C) ⋯

in PrL is CMon∞(C). In particular, CMon∞(C) is presentable.

ι−1,!

−→
ι0,!

−→

Prop: Universality of CMonm(−)

Let −2 ≤ m ≤ ∞. For every C ∈ Cat⊕m
∞  and D ∈ Catmfin

∞ , post-composition with
evaluation at pt ∈ Smfin induces an equivalence of ∞-categories

Funmfin(C,CMonm(D)) ≃ Funmfin(C,D)



As a consequence, for each m-semiadditive ∞-category we have a unique lift of the Yoneda
embedding to a CMonm-enriched Yoneda embedding:

Here a functor between m-semiadditive ∞-categories is said to be m-semiadditive if it
preserves m-finite limits.

Proof.
Taking D = S in the universality of m-commutative monoids, we see that the ordinary Yoneda
embedding

よ : C ↪ Funmfin(Cop,S) ⊆ Fun(Cop,S)

lifts essentially uniquely to a fully-faithful m-finite limit preserving functor

よCMonm : C ↪ Funmfin(Cop,CMonm) ⊆ Fun(Cop,CMonm)

□

Currying we obtain a functor

HomCMonm(−, −) : Cop × C → CMonm

lifting MapC(−, −), and hence giving each mapping space a canonical m-commutative monoid
structure.

Examples
Before moving into more technical work, let's review some examples of m-semiadditive ∞-
categories and the behaviour of cardinalities of m-finite spaces in them. We have the following
universal example of an m-semiadditive ∞-category:

Corollary: CMonm-enriched Yoneda

Let −2 ≤ m ≤ ∞. For each C ∈ Cat⊕m
∞ , there is a unique fully-faithful and m-

semiadditive functor

よCMonm : C ↪ Fun(Cop,CMonm)

whose composition with the forgetful functor CMonm → S is the Yoneda embedding.

Universal Case

For −2 ≤ m < ∞ the symmetric monoidal ∞-category of spans C = Span(Smfin) is the
universal m-semiadditive ∞-category. For every A ∈ Smfin, we have



In Chromatic homotopy theory we often come across examples of ∞-semiadditive ∞-
categories of higher height. For a given prime p, and 0 ≤ n < ∞, let K(n) be the Morava K-
theory spectrum of height n at the prime p. We have that the localizations SpK(n) and SpT (n)

are ∞-semiadditive. For n = 0, SpK(0) ≃ SpT (0) ≃ SpQ, and the cardinalities recover the
homotopy cardinality. Similarly, since SpK(n) is p-local for all n, if A is a π-finite space whose
homotopy groups have cardinality prime to p, then the K(n)-local cardinality of A coincides

|A|pt = (pt ← A → pt) ∈ π0MapSpan(Smfin)(pt, pt)

Note that π0MapSpan(Smfin)(pt, pt) is the set of isomorphism classes of m-finite spaces
with semiring structure given by

|A| + |B| = |A ⊔ B|, |A| ⋅ |B| = |A × B|

Similarly, CMonm is the universal presentable m-semiadditive ∞-category. The Yoneda
embedding induces a fully-faithful m-semiadditive symmetric monoidal functor

Span(Smfin) ↪ CMonm

taking an m-finite space A to the free m-commutative monoid on A.

Homotopy Cardinality

For a π-finite space A, the homotopy cardinality of A is the rational number

|A|0 := ∑
a∈π0(A)

∏
n≥1

|πn(A, a)|(−1)n

∈ Q≥0

We say an ∞-category C is semirational if it is 0-semiadditive (i.e. 0-finite spaces are C-
ambidextrous, which are contractible, empty, and discrete spaces) and for each n ∈ N,
multiplication by n is invertible in C (e.g. SpQ or QMod). Here multiplication by n on an
object C is given by the cardinality |pt⊔n|C , which is the composite

C C ×n C ⊔n C

A semirational ∞-category which admits all 1-finite colimits is automatically ∞-
semiadditive, and for every π-finite space A, we have that its cardinality is its homotopy
cardinality:

|A|C = |A|0 ∈ Q≥0 ⊆ End(idC)

This comes from the fact that the cardinality is additive, and for every fiber sequence of
π-finite spaces F → A → B where B is connected, |A| = |F ||B|.

Δ
−→

Nmpt⊔n

←−
≅

∇
−→



with the homotopy cardinality for all n by the previous example. However, this does not hold in
general for π-finite spaces whose cardinality is not prime to p.

To study the K(n)-local cardinalities of π-finite spaces, it is useful to consider their image in
Morava E-theory. For n ≥ 1, let En be the Morava E-theory associated with some formal
group of height n over Fp, viewed as an object of CAlg(SpK(n)). In particular, we have a (non-
canonical) isomorphism

π∗En ≅W(Fp)[[u1, . . . , un−1]][u±1], |ui| = 0, |u| = 2

The following gives another family of examples of higher semiadditive ∞-categories:

–

–

Chromatic Cardinality

The ∞-category Θn := ModEn
(SpK(n)) is ∞-semiadditive by Theorem 5.3.1 in6, and

hence we can consider cardinalities of π-finite spaces in π0En. The p-typical height n
cardinality of a π-finite space A is defined to be

|A|n := |A|Θn
∈ π0En

For n = 0 we can identify Q with π0E0, and so can recover the homotopy cardinality. For
n > 0, let L̂pA := Map(BZp, A) be the p-adic free loop space of A. It turns out that
|A|n ∈ π0En belongs to the subring Z(p) ⊆ π0En and satisfies |A|n = |L̂pA|n−1.
Applying this inductively we see that

|A|n = |Map(BZn
p , A)|0 ∈ Z(p)

for the p-typical height n cardinality in terms of the homotopy cardinality. If A is a p-
space, then L̂pA ≃ LA := Map(S 1, A) coincides with the ordinary loop space.

–

Question

How can we show that L̂pA ≃ LA when A is a p-space? Hint: First consider the universal
examples K(Z/p, n).

Prop: Cat
mfinColim

∞  is m-semiadditive

For every −2 ≤ m ≤ ∞ the ∞-category CatmfinColim
∞  is m-semiadditive.

Categorical Cardinality



Conversely, the m-semiadditive structure on CatmfinLim
∞  is given by taking limits of constant

diagrams.

The full subcategory Cat⊕m
∞ ⊆ CatmfinColim

∞ ,CatmfinLim
∞  is closed under colimits, and in particular

is m-semiadditive, since the inclusion admits the right adjoint CMonm(D).

Extra Examples of Ambidexterity
Similarity between Ambidexterity and Traces
Recall that for a symmetric monoidal ∞-category (C, ⊗, 1) with subcategory C⋄ ⊆ C spanned
by dualizable objects, every X ∈ C

⋄ admits a trace or Euler characteristic given by the
composite

χX := (1 → X ⊗ X ∨ X ∨ ⊗ X → 1)

where the symmetrizer in the center can be thought of as the analogue of our norm map in this
context. For example, if (C, ⊗, 1) = (Sp, ⊗, S), and X ∈ Sp⋄ = Spω, then χX ∈ π0S = Z is the
Euler characteristic of the finite space X (here finite is in the sense of ω-compactness, which
is equivalent to X being weakly equivalent to a finite CW complex).

Let −2 ≤ m ≤ ∞ and let C ∈ CatmfinColim
∞ . For every m-finite space A, the m-

semiadditive structure of CatmfinColim
∞  gives rise to a functor |A|C : C → C. When m < ∞,

|A|C ≃ colimA Δ(−) is given by taking the constant colimit on A. Since
Cat∞finColim

∞ → CatmfinColim
∞  preserves limits, and hence is m-semiadditive, the same claim

holds for m = ∞.

(co)Cartesian m-commutative Monoid Structure

For C ∈ CatmfinColim
∞ , since Smfin is freely generated from a point under m-finite colimits,

we have

MapmfinL(Smfin, C) ≃ Map(pt, C) ≃ C
≃

and the resulting m-commutative monoid structure on C≃ is referred to as the
cocartesian structure. Dually, for C ∈ CatmfinLim

∞ , we have

MapmfinR(S
op

mfin
, C) ≃ Map(pt, C) ≃ C

≃

and the resulting m-commutative monoid structure on C≃ is referred to as the cartesian
structure.

η ≃
−→

ϵ



On the other hand, in the context of C-ambidexterity for a π-finite map A → B and a
(co)complete ∞-category C (or at least finitely complete with sufficient limits and colimits so the
following adjunctions exist), we look at the adjunctions q! ⊣ q∗ ⊣ q∗ : CB → C

A where q∗ is
pullback, q! is left Kan extension along q, and q∗ is right Kan extension along q. When B = pt is
the point, q∗ becomes the diagonal, q! = colimA, and q∗ = limA. The Norm map is then a
natural comparison map (which need not always exist)

q! q∗

which in the case of C-ambidexterity of q is an equivalence, along with all the associated norm
maps for diagonal A → A ×B A of q. The cardinality for a C-ambidextrous map q then defines
an analogue of the trace in the case of symmetric monoidal ∞-categories

idC → q∗q∗ q!q
∗ → idC

For example, if C = Sp is the infinity category of spectra, then we can use the natural
equivalence

FunL(Sp,Sp) FunL(S,Sp) Sp

(c.f. Universality of Multiplicative Infinite Loop Space Machines (Gepner, Groth, Nikolaus) >
^5eab9d) to observe that idSp being cocontinuous means we can write it as S ⊗ −, so that

π0End(idSp) ≅π0EndSp(S) = Z

Thus, for any π-finite map, the Sp-cardinality of q : A → B corresponds to an integer, where for
X ∈ Sp, |q|X : X → X is given by the composite

X S ⊗ X S ⊗ X X

where we're identifying |q|X with the integer value.

Examples in Representation Theory
To begin let's consider the case of G a finite group so that A = BG is a 1-finite space, and take
C = RMod for a commutative unital ring R. Then CA = R[G]Mod is the category of R-valued
G-representations for a commutative ring R. The map q∗ : RMod → R[G]Mod is given by
sending an R-module to the trivial representation associated to it. On the other hand,
q!M = colimBGM = MG = M/(m ∼ gm) sends a G-representation to the R-module of G-
orbits, and q∗M = limBGM = M G sends a G-representation to the R-module of G-fixed
points. We then have a natural norm map

NmG : MG → M G, [m] ↦ ∑
g∈G

g ⋅ m

q

Nmq

=⇒

η Nmqq∗

←−
≃

ϵ

−∘Σ∞
+

−→
≃

evpt
−→

≃

≃
−→

(|q|X⋅)⊗X
−→

≃
−→



The kernel of this map consists of those G-orbits such that ∑g∈G g ⋅ m = 0, while the image
always at least contains |G|M G. The norm map fits in the Tate cohomology groups which are
defined by

Ĥ i(G; M) :=

Recall here that (−)G = HomR[G](R, −), and that
H n(G; −) := RnHomR[G](R, −) = Extn

R[G](R, −) are the right derived functors of the fixed

point functor, while (−)G = R ⊗R[G] −, and Hn(G; −) = Ln(R ⊗R[G] −) = Tor
R[G]
n (R, −) are

the left derived functors. We can also describe the group cohomology as the cohomology of the
cochain complex associated to the simplicial R-module Fun(G(−), M), with face operators
given by multiplying arguments internally, or acting on the left/right (with right action being
trivial), and degeneracies given by inserting identities.

Examples in Stable Homotopy Theory

⎧⎪⎨⎪⎩ H i(G; M) i ≥ 1

coker(NmG) i = 0

ker(NmG) i = −1

H−i−1(G; M) i ≤ −2

Example

Consider the case of G = Z/p and R = Z. Then NmZ/p : Z → Z is just multiplication by
p, implying that ker(NmZ/p) = 0 but coker(NmZ/p) = Z/p.

Example

If R is a commutative ring and G is a group with |G| ∈ R×, then NmG : R → R is
multiplication by |G|, and hence is an isomorphism. In particular, the norm map for any
constant representation is an isomorphism.

Example

If G = Z/4, R = C, and M = C with the action given by the inclusion Z/4 S 1 ⊆ C,
then MG = {0} ∪ ⋃t∈[0,π/2) e2πitR+ is the space of homotopy orbits, while M G = {0} is

the space of homotopy fixed points, so we would never have the norm map being an
isomorphism.

eiπt/2

−→



Let G be a finite group and let q : BG → ∗ be the unique 1-finite map of spaces. Let C = Sp be
the ∞-category of spectra so that q! = (−)hG is the homotopy orbits functor and q∗ = (−)hG is
the homotopy fixed points functor. Equivalently, q∗ = MapBG(EG, −) and q! = EG ⊗BG −,
where here we're using that Sp is tensored and cotensored over S, being complete and
cocomplete. Explicitly, for a spectrum X, q∗X = F G(EG+, X) is the G-equivariant mapping
spectrum and q!X = (Σ∞

+ EG ⊗ X)/Σ∞
+ BG with diagonal action.

In this situation the Tate construction measures the defect for BG being Sp-ambidextrous:

X tG = hocofib(XhG X hG)

Here for M  a Z[G]-module, the Tate construction HM tG has homotopy groups recovering the
Tate cohomology

π∗(HM tG) ≅Ĥ −∗(G; M)
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