Introduction to Semiadditivity

Introduction/Motivation

These notes are for a 30~40 minute talk on semi-additivity as appearing in Sections 2.1 and 2.2
of the paper Ambidexterity and Height[”, which was given as part of an Ambidexterity seminar
at UIUC in Fall 2025. In the paper Carmeli, Schlank, and Yanovski use the theory of higher
semi-additivity to abstract and generalize the notion of height appearing in chromatic homotopy
theory. The v,-self maps used in the definition of chromatic height are instead replaced by the
cardinalities of certain m-finite spaces (to be discussed soon).

Further, the semi-additive height filtration introduced in the paper refines the inclusion
SPx(n) € SPr(n), Which is now known to be strict for n > 0. We also pull some ideas from later

work due to Cnossen et al. on Parameterized Semi-additivity[z], and earlier work on applications

of ambidexterity to chromatic homotopy theory[3].
Let's begin by recalling the notation used in the paper:
Conventions:

Catf;to C Cato, will denote the sub-oo-category spanned by stable oco-categories and exact
functors. Similarly, Pr_ft - Prl is the full-subcategory spanned by stable presentable co-
categories.
Aspace A€ Sis
m-finite form > —2, if m = —2 and A is contractible, or m > —1, the set my A is
finite, and all fibers of the diagonal A : A — A x A are (m — 1)-finite5
mr-finite or co-finite, if it is m-finite for some integer m > —2. For —2 < m < co we
write Sifin € S for the full subcategory spanned by m-finite spaces.
p-space, for p € Z a prime, if all the homotopy groups of A are p-groups.
Given an oo-category C € Catoo,
For every map of spaces A N B, we write ¢* : CB — ¢4 for the pullback functor and
q! and g, for the left and right adjoints of ¢* (i.e. given by left and right Kan extension,
respectively), whenever they exist
Under the equivalence S/, ~ S, we will identify a space A with its map to the terminal
object, so that above we would write A* instead of ¢* for ¢ : A — pt, and similarly for
the others
For each X € C, we write X[A] := A;A*X, and write V : X[A] — X for the co-unit
(called the fold). Similarly, we write X4 := A, A*X and write A : X — X4 for the
unit (called the diagonal)



Given a map of spaces A 4 B, and b € B, we write qfl(b) for the homotopy fiber of g over
b. We say that:

An oo-category C admits g-limits (resp. g-colimits) if it admits all limits (resp. colimits)
of shape ¢ ~(b) forall b € B
Afunctor F' : C — D preserves g-limits (resp. preserves g-colimits) if it preserves all
limits (resp. colimits) of shape ¢! (b) forall b € B

Forevery —2 < m < oo
m-finite (co)limits refer to (co)limits indexed by an m-finite space
We write Cat™ "M C Cat . (resp. Cat™ "™ C Cat,.) for the subcategory spanned
by co-categories admitting m-finite colimits (resp. limits) and functors preserving them.
For C,D € Cat™"®im (resp. € Cat™"m) We wrote Fun™ " (C, D) (resp.
Fun™i"R(C, D)) for the full subcategory of Fun(C, D) spanned by m-finite colimit (resp.
limit) preserving functors

We write Cat®™ C Cat,, for the subcategory spanned by the m-semiadditive co-
categories and m-semiadditive (i.e. m-finite colimit preserving) functors.

Given an oo-operad O, we say C € Algy(Cato) is compatible with /C-indexed colimits
for some collection of co-categories K if the underlying co-category C admits K-
indexed colimits and every tensor operation ® : C" — C of O preserves K-indexed
colimits in each variable

An m-semiadditively O-monoidal co-category is an OJ-monoidal m-semiadditive oco-
category which is compatible with m-finite colimits Q. What does this mean?

If C is a monoidal co-category and D is an oco-category enriched in C, we write

Hom% (X, Y) for the C-mapping object of X,Y € D. When C is closed, we write
Home(X,Y) for Hom$(X,Y). For every co-category C we write

Hom$(X,Y) = Map(X,Y).

The importance of m-finite maps and spaces lies in their use as indexing co-categories for
diagrams that we are interested in comparing limits and colimits of. Specifically, the m in m-
semiadditivity indicates the size of the n-finite spaces A for which we have norm maps

Nmy : colimy = limy
which are equivalences.
Semiadditivity
Let's begin with the basic notion of ambidexterity in chromatic homotopy theory.
(= Ambidexterity of w-finite Maps

Let C € Caty,. A m-finite map A 5 Biis called:



weakly C-ambidextrous if it is an equivalence, or A, : A -+ A xg AisC-
ambidextrous

C-ambidextrous if it is weakly C-ambidextrous, C admits all g-limits and g-colimits,
and the norm map Nmy : ¢t — g+« iS an equivalence.

A (—2)-finite map, i.e. an equivalence, is always C-ambidextrous. If g is m-finite, then the
diagonal

Ay
A— AxpA

is (m — 1)-finite and the ambidexterity of A, allows in turn the definition of Nm,.

The property of being C-ambidextrous is preserved by pullbacks and determined by its fibers.
Since the fibers of the diagonal A — A x A are path spaces of A, A is weakly C-ambidextrous
if and only if the path spaces of A are C-ambidextrous. This begins the inductive construction
since the path-space reduces from an m-finite space to an (m — 1)-finite space.

Prop: Characterization of C-Ambidextrous Morphism

Let C be an oo-category and let A 2, Bbe a w-finite map. The map is C-ambidextrous if
and only if the following hold:

q is weakly C-ambidextrous
C admits all g-limits and g-colimits
Either g, preserves all g-colimits or g, preserves all g-limits.

Proof Idea.

From the discussion above, we can assume wlog that B = pt. The forward implication is
immediate due to the norm equivalence, so it suffices to show that if (1)-(3) hold, then the norm
map is an equivalence.

[] %

Prop: Closure of Ambidexterity under co-category constructions

Let C be an oo-category and let A be a w-finite C-ambidextrous space. The space A is
also D-ambidextrous for

(1) D=Ce>
(2) D = Fun(Z,C) for Z an co-category

(3) D C C containing the final object and closed under QF A-limits for alla € A and
k>0




(4) D C C containing the initial object and closed under Q% A-colimits for alla € A
and k > 0.

Note: Here QﬁA is the k-fold based loop space at a € A.

The first two properties are classical, while the last two are dual and follow from the inductive
construction of norm maps.

¢) Important

The main feature of ambidexterity is that it allows us to integrate families of morphisms in
C. That is, given a C-ambidextrous map A - B and X,Y € CB, we have a map

[+ Mapeala"X,°Y) = Mapes(X,Y)
q
which can be given by the composite

—oNm, €o—on

Mapea(q* X, q*Y) % Mapes(qig* X, 1q"Y) «—— Maps(g.q" X, q1q"Y) —— Mapgs

When B = pt we can think of an element of Map.4(¢* X, ¢*Y) as a map

R Map(X,Y),and [, f € Map.(X,Y) as the sum of f over points of A. Explicitly,
the identification of mapping spaces comes from the equivalences

Mapcs(g* X, q*Y) ~ Map,(X, ¢,q*Y) ~ lim 4Map.(X,Y) = Map.(X,Y)4

Intuition for Induction: For a space A and a diagram F': A — C, to specify a norm map
Nm 4 : colim4F' — lim 4 F'is to specify a homotopy coherently compatible collection of
morphisms ij’b : F(a) — F(b), for a,b € A. F always provides a family of candidates for
these maps, F,;, : Map 4(a,b) — Map(F(a), F(b)), but a-priori there is no coherent choice
for them which can be made. But, if we can integrate over the spaces Map 4(a, b), we can just

take
Nm%® = / F,,
Aa,b

When F'is constant on some object X, then the Norm map is the same as a map of spaces
A x A — Map(X, X), where the above construction specializes to Nm%’ = |Map 4(a, b)|x

¢) Important

The initial claim comes from the natural equivalences



Mapg(colim 4 F, lim 4 F) — Mapea(F, lim o F) ~ Mapea(F, lim 4F) — Map cay(F, F)

where F : A — C4 is the whiskering of F oy : A x A — C, while F : A — C4 is the
whiskering of F oy : A X A — C. Thus, we have a natural equivalence

Map,(colim 4 F, lim 4 F) = Mapgawa(F o my, F o 1q)

Thus, the data of a map colim 4 F' — lim 4 F' is equivalent to the data of a map of simplicial
setsa: [1] x A x A — Csuchthatag = Fomg and a1 = F o .

Further, in the case when F' = X is the constant functor at some X € C. In this case, the
data of a map colim 4 X — lim 4 X is equivalent to the data of a map of simplicial sets
ax : [1] x A x A — Csuch that ax|sijxax4a = X. Anatural family of such
transformations is then a map of simplicial sets a : [1] x A x A x C — C such that

a|6[1]><A><A><C = Tc.

More generally, if C has all A-shaped (co)limits, so that we have functors
colimy, lim4 : C4 — C, then the natural equivalences we want are given by using adjoints and
(co)continuity of the diagonal:

Nat(colim 4, lim4) = Nat(A 4colim 4,id¢4) = Nat(colim4(A4 0 —),idca) = Nat(Ago—,Ay)

Thus, a family of norms Nm 4 : colim4 = lim 4 is equivalent to a natural transformation
(Ago—)= Ay:C4— (CHA

Similarly, if C has all g-shaped (co)limits for ¢ : A — B, so that q; - ¢* H ¢, exist, then we have
natural maps

~ —oBCqL*,W*(a) ~
Nat(q, g.) — Nat(q*q,idps) ————— Nat((ms)7},idea) — Nat(nw}, 73)

where a : ]q* = m5q" is the natural equivalence coming from
m1q* ~ (qm)* = (gm2)* ~ w5q*, and the center map uses the mate calculus on this
transformation to obtain BCqL*m;(a) : (me) 1] = g*qu. If this Beck-Chevalley transformation is

an equivalence, then it follows that the data of a norm Nm,, : ¢; = ¢, is equivalent to the data
of a natural transformation 7] = 75 : CA — CA*54_ Since the square in which o appears is a
homotopy pullback square of co-groupoids, and hence we can assume without loss of
generality that g is a Kan fibration, the square is exact, and hence it satisfies the Beck-

Chevalley condition (c.f. Chapter 13 of[4]).

Inductive Approach: If A is an m-finite space, then the path spaces Map 4(a, b) are (m — 1)-
finite. Thus, if inductively we have invertible canonical norm maps Nm g for all (m — 1)-finite
spaces B, then we obtain a canonical way to integrate (m — 1)-finite families of morphisms,



which allows us to define norm maps for all m-finite spaces. Whether all these new norm maps
are isomorphisms is now a property, which if holding let's us continue the induction:

(m = —2) We define every oo-category to be (—2)-semiadditive. Recall that the (—2)-finite
spaces are the contractible ones, and the canonical norm map Nm,; is hence an
equivalence, being equivalent to the identity transformation on id.. This just says we can
canonically sum a one point family of maps.

(m = —1) The only non-contractible (—1)-finite space is A = (). The associated norm map
is the unique map

Nmgy : 0¢c — 1¢

from the initial object to the terminal object of C, which always exists. Thus, Cis (—1)-
semiadditive if and only if it is pointed. This allows integration of empty families of
morphisms, which is to say that for any X,Y € C, we get a canonical zero map given by the
composition

X—>lc<i0c—>Y

(m > 0) Let A be an m-finite space, and suppose C is (m — 1)-semiadditive. Then in

particular we have an equivalence Nma, : A4 = Ay, : C* — CA*4, which corresponds

to a wrong-way co-unit va, : A% A4, = id and a wrong-way unit i, : id = Ay A%, so
that we can define the map

*

Nm
™ —)AA*AAﬂ'l_AA* %AAI NAAlAAT('z—>7T2

which from the discussion preceding the induction is equivalent to a norm map
Nmg : ¢t = g+, which is given by

Q*BC * *(ld) Nm * q*(ﬂ'g) €
q :> q«9 q| %Q*(ﬂ?)'wl _> Q*(ﬂ-2) AA *AAT‘-l <— Q*(ﬂ-2) AA'AAW —_— Q*(

where the Beck-Chevalley transformation can be written as the composite

(m2) i *ug (7m2) xaxq Crg*q Q1

BCqL*J;(a) : (mo) 1] ——= (M) 111¢ @ ———= (m2)1mq¢" ¢ —— ¢"q

As a first example, in the m = 0 step A is equivalent to a set, so we can replace A by a set if
necessary. Then X : A — Cis precisely a set of objects (X, )44 in C indexed by those in A,
and A 41X : A x A — Cis the matrix of objects (X ;)i jea With X, , = X, and X, = O¢
when a # b, and similarly A 4, X : A x A — C is the matrix of objects (Xzf’j)MGA with

X, ,=Xgand X, = 1¢c with a # b. On the other hand, 7} X = (X)4,5c4 and



Ty X = (Xb)a,beA are matrices with constant rows and constant columns, respectively. The
composite

(Xa)a,beA — (X(/l’b)a,beA — (Xa,b)a,beA - (Xb)a,beA

is given precisely by the matrix of maps f,; : X, — X} with f, , = idx,, while for a # b,

| ~ |
fap i Xo = 1¢ < 0¢ — X3 is the unique composite through the zero object. The norm map is
then the composite

T % — TTIT % = TTTT oo < DT TT Xeo — TTTT X0 — [T X

acA becAacA beAacA beAacA beAacA beA

As a second example, if we're doing the m = 1 step with A a connected 1-finite space, so that
A = BG for some finite group G == m1(A), then Ay ) X ~ [[ o X ~ [[,ce X ~ AuuX.
Write A : A — pt for the unique map to the point. Further, 4, X = X} and A*X = X" for
X € CB%are the homotopy orbits and fixed points, respectively, while A*Y =Y for Y € Cis an
object with trivial action, 77X = X is given G x G-action with trivial right action component,
and similarly for 73 X = X. Finally, if Z € CB¢*BC is a G x G-C object, then (71)1Z = Zngx1
is the GG-space given by taking homotopy orbits with respect to the first factor, and

(m1)Z = ZhGx1 s the G-space given by taking homotopy fixed points with respect to the first
factor. Now, the composite

nxX ST[x < [[x 5 mx
geG geG
is given by summing over orbits. Finally, the first map Xng — (@)hG is given by sending the
orbits of a G-space to the homotopy fixed points of the homotopy orbits with trivial action, and
the last map ()_(hG)hG — XhG s given by sending the the homotopy fixed points of the
homotopy orbits of the original G-object viewed itself as a G-object with trivial action, to the

homotopy fixed points of the underlying object. Thus, the resulting norm map is precisely the
classical orbit map:

hG

~ A A G =~
Xne — (Xne)® — (@ X) — (X,q)" — X"
9€G  / hG

given informally by [z] — > ;g .

Integrating the identity morphism yields the notion of C-cardinality.

(=) C-cardinality

Let C € Caty, and let A 2, B be a C-ambidextrous map. We have a natural

transformation id¢s M ides given by the composition




. Ux * qu x G .
idep — q+q” <— qiq¢” — idcs

A
For a C-ambidextrous space A, we write id¢ i) id¢ and call |A|¢ the C-cardinality of A

A
Note that for a given object X € C, X g X is exactly fA id x.

Let C be a semiadditive oco-category. For a finite set A, viewed as an 0-finite space, the
operation |A|¢ is simply the multiplication by the natural number which is the usual
cardinality of A.

Note: For a C-ambidextrous space A, the A-limits and A-colimits in C are canonically
isomorphic, which implies the following:

Prop: Preservation of Limits and Colimits for Ambidextrous Spaces

Let C,D € Cats, and let A be a C- and D-ambidextrous space. A functor F : C — D
preserves all A-limits if and only if it preserves all A-colimits. Moreover, if F' preserves all
A-(co)limits, then F(|A|c) ~ |A|p.

Using Fubini's theorem for iso-normed functors, we can obtain the following additivity result for
cardinalities. In the current context Fubini's Theorem for iso-normed functors says that if

AL B C are m-finite maps of 7-finite spaces such that p and q are both C-ambidextrous,
then fqp is homotopic to the composite

fp * * ‘fq
MapCA(p*q*X7p*q*Y) — MapCB(q X7 q Y) — Mach(X, Y)

Prop: Additivity of Cardinalities

Let C € Cat,, and A L B a map of spaces. If B and q are C-ambidextrous, then A is C-
ambidextrous and for every X € C,

Alx = / 7
B

Intuition: This says that the cardinality of the total space A is the sum over B of the
cardinalities of the fibers Ay of g. To see how this is a consequence of Fubini we can re-write
both sides using the integral notation to give

B*X




A BJgq

|A x Blc = |Alc|B|c € End(idc)

We can interpret this as saying

and

[Alc = ][ IAalc € End(idc)

ac€myA

When C is monoidal and the tensor product preserves A-colimits in each variable, Lemma 3.3.4

ofl3 " implies that | A| x can be identified with |A|; ® X, where 1 is the monoidal unit.
Additionally, if R € Alg(C), then |A|g : R — R can be identified with multiplication by the
image of |A|; € w1 := moMap(1, 1) under the unit map myl — 7R := moMap(1, R), which
we also denote by |A|g.

Higher Commutative Monoids

We refer to an oo-category as m-semiadditive if all m-finite spaces are ambidextrous. For

m = 0 we recover the ordinary notion of a semiadditive co-category. Note that if C C D is a full
subcategory of an m-semiadditive co-category, then if C is either stable under m-finite colimits
or m-finite limits, then it is stable under both, and it is m-semiadditive itself.

& m-Commutative Monoids
Let —2 < m < o0. For C € Cat™ "M the co-category of m-commutative monoids in C
is given by

CMon,,(C) := Fun™ "™ (Span(Sufin) 7, C)

When C = S we write CMon,,, := CMon,,,(S), and refer to its objects as m-commutative
monoids.

In the case m = —2, evaluating at pt, the unique object of Span(S(~2)finColim) "gives an
equivalence CMon _»(C) ~ C.

An object X € CMon,, consists of an underlying space X(pt), together with a collection
of coherent operations for summation of m-finite families of points in it. Indeed, for
A € S,u6in, We have a canonical equivalence X(A4) ~ X(pt)4. Given A — B in Spin, the



image of A = A — Bis the restriction X(pt)? — X(pt)4, while the image of
B+ A = A encodes integration along fibers X (pt)4 — X(pt)2.

(3 Question

How can we see the restriction and integration along fibers perspectives above?

Prop: Forgetful Functors between m-Commutative Monoids Cats

let -2 <m < ooandletC e Catg’,j’“)_ﬁ"“m. The restriction along the inclusion functor
Lm * SPan(Smfin) = SPan(S(y11)fin)

induces a limit preserving functor

¢y, : CMon,, 1(C) — CMon,,(C)

Proof.
It suffices to prove that v, preserves m-finite colimits. By the description of colimits in spans it

suffices to prove that Smfin < S(m1)fin is stable under m-finite colimits.
O

(® Question

X
How can we see that S;,fin has m-finite colimits? If A — & is an m-finite diagram, then
colimy X ~ colim4/x* ~ A/X

How do we know that A/ X is also m-finite? We know that A is m-finite and that all fibers
of the Kan fibration A/ X — A are m-finite, so it is also an m-finite map. Do m-finite maps
compose?

The following answers the above question:

Prop: m-finite Maps Compose

If f: A— Bandg: B — C are m-finite, then so is their composite gf.



Proof.

Taking fibers, it suffices to show that if f : A — B is an m-finite map with B an m-finite space,
then A is also m-finite. For each point b € B, we have a homotopy fiber sequence

f1(b) — A — Bwhere f1(b) is also m-finite, by definition of m-finite maps. Thus, looking at
the long exact sequence of homotopy groups for each a € f‘l(b), we see that A is also m-
truncated, has finitely many path components, and has all homotopy groups begin finite,

completing the proof.
[

We extend CMon,,, to m = oo by defining for C € CatzfinLim the co-category
CMony(C) := lim,, CMon,(C)
with limit computed in Cat,. This is equivalent to
Fun®f"R(Span(S.gfin) %, C)

Consequently, when C is presentable, CMon,,(C) is presentable for all m, and CMon (C) can
then be described as a colimit of CMon,,(C) in Pr":

For C € PrL, the forgetful functors
ty, : CMon,11(C) — CMon,,(C)

admit left adjoints, and the colimit of the sequence

Lo,

C ~ CMon_»(C) o, CMon_1(C) — - -

in Prl is CMon(C). In particular, CMon(C) is presentable.

The mapping spaces between two objects in an m-semiadditive co-category have a canonical
m-commutative monoid structure.

Prop: Universality of CMon,,(—)

Let —2 < m < oo. Forevery C € Cat@m and D ¢ Cat’g‘oﬁ", post-composition with
evaluation at pt € Smfin iInduces an equivalence of co-categories

Fun™"(C, CMon,,(D)) ~ Fun™"(C, D)




As a consequence, for each m-semiadditive oco-category we have a unique lift of the Yoneda
embedding to a CMon,,,-enriched Yoneda embedding:

Corollary: CMon,,-enriched Yoneda

Let —2 < m < 0. ForeachC & Catg’i;", there is a unique fully-faithful and m-
semiadditive functor

& Menm . ¢ < Fun(C, CMon,y,)

whose composition with the forgetful functor CMon,, — S is the Yoneda embedding.

Here a functor between m-semiadditive oo-categories is said to be m-semiadditive if it
preserves m-finite limits.

Proof.
Taking D = S in the universality of m-commutative monoids, we see that the ordinary Yoneda
embedding

&£ : € Fun™i(C?, 8) C Fun(C?,S)
lifts essentially uniquely to a fully-faithful m-finite limit preserving functor

& Morn ;¢ — Fun™™"(C?, CMon,,) C Fun(C*, CMon,y,)

Currying we obtain a functor
Hom™Men(— —) : ¢ x ¢ — CMon,,

lifting Map.(—, —), and hence giving each mapping space a canonical m-commutative monoid
structure.

Examples

Before moving into more technical work, let's review some examples of m-semiadditive oo-
categories and the behaviour of cardinalities of m-finite spaces in them. We have the following
universal example of an m-semiadditive co-category:

For —2 < m < oo the symmetric monoidal co-category of spans C = Span(Ssin) is the
universal m-semiadditive oo-category. For every A € 8,5, We have



|A|Pt = (pt —A— pt) € WOMapSpan(Smﬁn)(pta pt)

Note that WoMaPspan(smﬁn)(Pt, pt) is the set of isomorphism classes of m-finite spaces
with semiring structure given by

Al +[B| = [AUB|, |A]-|B|=|Ax B

Similarly, CMon,, is the universal presentable m-semiadditive co-category. The Yoneda
embedding induces a fully-faithful m-semiadditive symmetric monoidal functor

Span(S,fin) — CMon,,

taking an m-finite space A to the free m-commutative monoid on A.

For a w-finite space A, the homotopy cardinality of A is the rational number

[Alo:= > J]Ima(4,0)|"V" € Qs

aemy(A) n>1

We say an oo-category C is semirational if it is 0-semiadditive (i.e. 0-finite spaces are C-
ambidextrous, which are contractible, empty, and discrete spaces) and for eachn € N,
multiplication by n is invertible in C (e.g. Spgp or QMod). Here multiplication by n on an
object C'is given by the cardinality |pt™"|¢, which is the composite

A Nm tLin A\
C— "+ _Cc'r 5 ¢

A semirational co-category which admits all 1-finite colimits is automatically oo-
semiadditive, and for every w-finite space A, we have that its cardinality is its homotopy
cardinality:

|A|c = |A|0 € QEO C End(ldc)

This comes from the fact that the cardinality is additive, and for every fiber sequence of
w-finite spaces F — A — B where B is connected, |A| = |F||B|.

In Chromatic homotopy theory we often come across examples of co-semiadditive oo-
categories of higher height. For a given prime p, and 0 < n < oo, let K(n) be the Morava K-
theory spectrum of height n at the prime p. We have that the localizations SpK(n) and SpT(n)
are oo-semiadditive. For n = 0, Spg o) =~ Spr(g) =~ Spg, and the cardinalities recover the
homotopy cardinality. Similarly, since SpK(n) is p-local for all n, if A is a w-finite space whose
homotopy groups have cardinality prime to p, then the K (n)-local cardinality of A coincides



with the homotopy cardinality for all n by the previous example. However, this does not hold in
general for m-finite spaces whose cardinality is not prime to p.

To study the K (n)-local cardinalities of 7-finite spaces, it is useful to consider their image in
Morava E-theory. Forn > 1, let E,, be the Morava E-theory associated with some formal
group of height n over Fp, viewed as an object of CAIg(SpK(n)). In particular, we have a (non-
canonical) isomorphism

T By = W) [ur, s un )]0, ] =0, Juf =2

The oco-category ©,, := Modg, (Spx(n)) is co-semiadditive by Theorem 5.3.1in6, and
hence we can consider cardinalities of w-finite spaces in wgE,,. The p-typical height n
cardinality of a w-finite space A is defined to be

|A|n = |A|@n € WOEn

For n = 0 we can identify @ with mgEy, and so can recover the homotopy cardinality. For
n > 0, let EpA := Map(BZ,, A) be the p-adic free loop space of A. It turns out that
|A|, € moE, belongs to the subring Z,) C mE, and satisfies |4, = |E,,A|n_1.
Applying this inductively we see that

|Al,, = [Map(BZ;, A)lo € Zy)

for the p-typical height n cardinality in terms of the homotopy cardinality. If A is a p-
space, then pr ~ LA := Map(S?, A) coincides with the ordinary loop space.

(® Question

How can we show that EPA ~ LA when A is a p-space? Hint: First consider the universal
examples K(Z/p,n).

The following gives another family of examples of higher semiadditive oco-categories:

Prop: Cat™"Clim jg 1 -semiadditive

mfinColim
[e%9)

For every —2 < m < oo the oo-category Cat is m-semiadditive.



Let =2 <m < ocoandletC e Cat(’)”oﬁ"c°""‘. For every m-finite space A, the m-
semiadditive structure of Cat™ "M gives rise to a functor |A|¢ : € — C. When m < oo,
|Al¢ ~ colim 4 A(_y is given by taking the constant colimit on A. Since

CatXfinColim _, CagmfinCelim nroserves limits, and hence is m-semiadditive, the same claim

holds for m = oo.

mfinLim
%)

Conversely, the m-semiadditive structure on Cat is given by taking limits of constant

diagrams.

= (co)Cartesian m-commutative Monoid Structure

For C € Cat™inCelim since S, ¢y is freely generated from a point under m-finite colimits,
we have

Map™ ™ (Spufin, C) =~ Map(pt, C) ~ C=

and the resulting m-commutative monoid structure on C= is referred to as the
cocartesian structure. Dually, for C € Cat™ "™ e have

Map™inR(S%®. ) ~ Map(pt,C) ~ C~

mfin?

and the resulting m-commutative monoid structure on C= is referred to as the cartesian
structure.

The full subcategory Cat®n C Cat™finColim ' Ca¢mfinkim i closed under colimits, and in particular
is m-semiadditive, since the inclusion admits the right adjoint CMon,,, (D).

Extra Examples of Ambidexterity

Similarity between Ambidexterity and Traces

Recall that for a symmetric monoidal co-category (C, ®, 1) with subcategory C° C C spanned
by dualizable objects, every X € C° admits a trace or Euler characteristic given by the
composite

x=15XeX' S X'eXx51)

where the symmetrizer in the center can be thought of as the analogue of our norm map in this
context. For example, if (C,®,1) = (Sp, ®,S), and X € Sp°® = Sp¥, then xx € m,S = Z is the
Euler characteristic of the finite space X (here finite is in the sense of w-compactness, which
is equivalent to X being weakly equivalent to a finite CW complex).



On the other hand, in the context of C-ambidexterity for a 7r-finite map A % Banda
(co)complete co-category C (or at least finitely complete with sufficient limits and colimits so the
following adjunctions exist), we look at the adjunctions ¢ - ¢* - g : C® — C4 where ¢* is
pullback, g is left Kan extension along ¢, and g is right Kan extension along q. When B = pt is
the point, ¢* becomes the diagonal, g = colim 4, and g« = lim4. The Norm map is then a
natural comparison map (which need not always exist)
Nm,

which in the case of C-ambidexterity of ¢ is an equivalence, along with all the associated norm
maps for diagonal A — A x g A of q. The cardinality for a C-ambidextrous map ¢ then defines
an analogue of the trace in the case of symmetric monoidal co-categories

. n * quq* x € .

ide = q+q” +—— qi¢” — id¢
For example, if C = Sp is the infinity category of spectra, then we can use the natural
equivalence

—oX%® eVpt
Fun®(Sp, Sp) — Fun®(S, Sp) — Sp

(c.f. Universality of Multiplicative Infinite Loop Space Machines (Gepner, Groth, Nikolaus) >
"5eab9d) to observe that ids, being cocontinuous means we can write itas S ® —, so that

moEnd(ids,) 2 moEnds,(S) = Z

Thus, for any m-finite map, the Sp-cardinality of ¢ : A — B corresponds to an integer, where for
X € Sp, |g|x : X — X is given by the composite

XS sex WX o xS x

where we're identifying |g| x with the integer value.

Examples in Representation Theory

To begin let's consider the case of GG a finite group so that A = BG is a 1-finite space, and take
C = RMod for a commutative unital ring R. Then C4 = R[G]Mod is the category of R-valued
G-representations for a commutative ring R. The map ¢* : RMod — R|G]Mod is given by
sending an R-module to the trivial representation associated to it. On the other hand,

@M = colimgaM = Mg = M/(m ~ gm) sends a G-representation to the R-module of G-
orbits, and ¢, M = limpeM = M sends a G-representation to the R-module of G-fixed
points. We then have a natural norm map

Nmg : Mg — MC, [m]HZg-m

geG



The kernel of this map consists of those G-orbits such that EQGG g-m = 0, while the image
always at least contains \G]MG. The norm map fits in the Tate cohomology groups which are
defined by

( HY(G; M) i>1
coker(Nmg) i=0

ker(Nmg) i= -1

\H_i_l(G;M) z§—2

Recall here that (—)¢ = Hom (g (R, —), and that

H"(G;—) := R"Hompg|(R, —) = Extp g (R, —) are the right derived functors of the fixed
point functor, while (—)¢ = R ®pgjq) — and H,(G; —) = L"(R ®pjg —) = Torf[G](R, —) are
the left derived functors. We can also describe the group cohomology as the cohomology of the
cochain complex associated to the simplicial R-module Fun(G(_), M), with face operators
given by multiplying arguments internally, or acting on the left/right (with right action being
trivial), and degeneracies given by inserting identities.

Consider the case of G = Z/p and R = Z. Then Nmg,, : Z — Z is just multiplication by
p, implying that ker(Nmz,) = 0 but coker(Nmy,,) = Z/p.

If Ris a commutative ring and G is a group with |G| € R*, then Nmg : R — R is
multiplication by |G|, and hence is an isomorphism. In particular, the norm map for any
constant representation is an isomorphism.

int/2
If G =2Z/4, R =C, and M = C with the action given by the inclusion Z/4 ANy N C,
then Mg = {0} U Uepo.n/2) e2™ R, is the space of homotopy orbits, while M& = {0} is
the space of homotopy fixed points, so we would never have the norm map being an
isomorphism.

Examples in Stable Homotopy Theory



Let GG be a finite group and let ¢ : BG — * be the unique 1-finite map of spaces. Let C = Sp be
the co-category of spectra so that q; = (— )¢ is the homotopy orbits functor and q, = (—)"“ is
the homotopy fixed points functor. Equivalently, g, = Mappq(EG, —) and ¢ = EG ®pg —,
where here we're using that Sp is tensored and cotensored over S, being complete and
cocomplete. Explicitly, for a spectrum X, ¢, X = F¢(EG ., X) is the G-equivariant mapping
spectrum and ¢ X = (¥ EG ® X)/X%° BG with diagonal action.

In this situation the Tate construction measures the defect for BG being Sp-ambidextrous:

N
X'¢ = hocofib(Xng ——s X7

Here for M a Z[G]-module, the Tate construction HM*'C has homotopy groups recovering the
Tate cohomology

m(HM'®) =~ H*(G; M)
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