Local to Global: An Introduction to Sheaves

E. Thompson¹

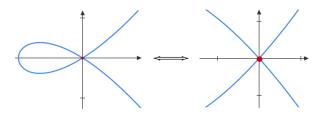
¹Faculty of Science University of Calgary

Math 511 Presentation

1/22

Motivating Question

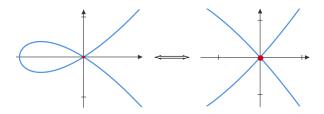
How can we study the relation between local and global properties of geometric spaces algebraically?



2/22

Motivating Question

How can we study the relation between local and global properties of geometric spaces algebraically?



One Answer: Sheaves and sheaf cohomology!

2/22

What is a sheaf?

• Throughout let $(X, \tau) \in \mathbf{Top}$.

Defⁿ: (Sheaves)

A **pre-sheaf** on X with values in \mathcal{C} is a functor

 $\mathcal{F}: \mathcal{O}(X)^{op} \to \mathcal{C}$

イロト イロト イヨト

What is a sheaf?

• Throughout let $(X, \tau) \in \mathbf{Top}$.

Defⁿ: (Sheaves)

A **pre-sheaf** on X with values in \mathcal{C} is a functor

 $\mathcal{F}: \mathcal{O}(X)^{op} \to \mathcal{C}$

(4 何) トイヨト イヨト

What is a sheaf?

• Throughout let $(X, \tau) \in \mathbf{Top}$.

Defⁿ: (Sheaves)

A **pre-sheaf** on X with values in C is a functor

 $\mathcal{F}:\mathcal{O}(X)^{op}\to \mathcal{C}$

If $\forall U \in \mathcal{O}(X) \ \mathcal{F}$ satisfies • $\forall U = \bigcup_{i \in I} U_i, \forall s_i \in \mathcal{F}(U_i),$ $\forall i, j \in I(s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}) \implies \exists ! s \in \mathcal{F}(U), \ \forall i \in I(s|_{U_i} = s_i)$ it is called a sheaf

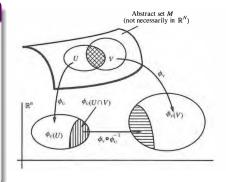
Eg: Smooth Manifolds

A smooth manifold is a pair (M, \mathcal{O}_M) , with $M \in \mathbf{Top}$ and $\forall U \in M, \ \mathcal{O}_M(U) = \text{smooth}$ real-valued functions, satisfying

• $\forall p \in M, \exists U, p \in U$, such that

 $(U, \mathcal{O}_M|_U) \cong (\mathbb{R}^n, \mathcal{O}_{C^\infty})$

for some $n \in \mathbb{N}$



Maps of sheaves

Defⁿ: (Sheaf Map)

A map between sheaves $\mathcal{F}, \mathcal{G}: \mathcal{O}(X)^{op} \to \mathcal{C}$ is a collection

 $(\eta_U \in \operatorname{Hom}_{\mathcal{C}}(\mathcal{F}(U), \mathcal{G}(U)))_{U \in \mathcal{O}(X)}$

such that the diagram commutes for any $U \subseteq V \in \mathcal{O}(X)$.

5/22

▶ < ∃ >

Maps of sheaves

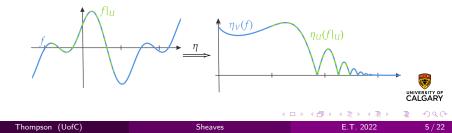
Defⁿ: (Sheaf Map)

A map between sheaves $\mathcal{F}, \mathcal{G}: \mathcal{O}(X)^{op} \to \mathcal{C}$ is a collection

$$(\eta_U \in \operatorname{Hom}_{\mathcal{C}}(\mathcal{F}(U), \mathcal{G}(U)))_{U \in \mathcal{O}(X)}$$

such that the diagram commutes for any $U \subseteq V \in \mathcal{O}(X)$.

$$\begin{array}{ccc} \mathcal{F}(V) & \stackrel{|_{U}}{\longrightarrow} & \mathcal{F}(U) \\ \eta_{V} & & & & & \downarrow \eta_{U} \\ \mathcal{G}(V) & \stackrel{}{\longrightarrow} & \mathcal{G}(U) \end{array}$$



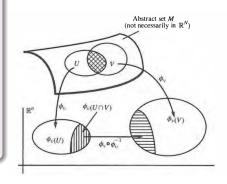
Eg: Smooth Manifolds

A smooth manifold is a pair (M, \mathcal{O}_M) , with $M \in \mathbf{Top}$ and $\forall U \in M, \ \mathcal{O}_M(U) = \text{smooth}$ real-valued functions, satisfying

• $\forall p \in M, \exists U, p \in U$, such that

$$(U, \mathcal{O}_M|_U) \cong (\mathbb{R}^n, \mathcal{O}_{C^\infty})$$

for some $n \in \mathbb{N}$



Eg: Smooth Manifolds

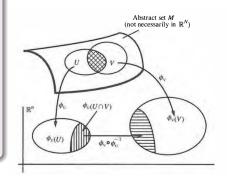
A smooth manifold is a pair (M, \mathcal{O}_M) , with $M \in \mathbf{Top}$ and $\forall U \in M, \ \mathcal{O}_M(U) = \text{smooth}$ real-valued functions, satisfying

• $\forall p \in M, \exists U, p \in U$, such that

$$(U, \mathcal{O}_M|_U) \cong (\mathbb{R}^n, \mathcal{O}_{C^\infty})$$

for some $n \in \mathbb{N}$

Observation: Differentiation and other operations on functions depend only on local behaviour



Characterizing Locality Through Universality: Stalks

• Fix a sheaf
$$\mathcal{F}: \mathcal{O}(X)^{op} \to \mathcal{C}$$

Defⁿ: (Stalks)

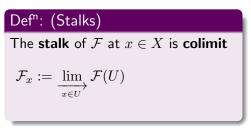
The **stalk** of \mathcal{F} at $x \in X$ is **colimit**

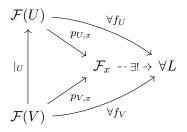
$$\mathcal{F}_x := \varinjlim_{x \in U} \mathcal{F}(U)$$

7 / 22

Important example: Stalks

• Fix a sheaf
$$\mathcal{F}: \mathcal{O}(X)^{op} \to \mathcal{C}$$





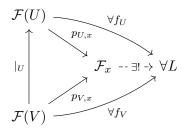
▶ < ∃ >

- E

Important example: Stalks

• Fix a sheaf $\mathcal{F}: \mathcal{O}(X)^{op} \to \mathcal{C}$

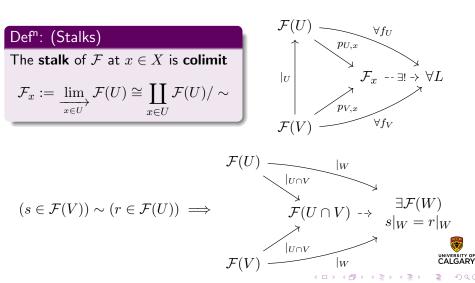
Defⁿ: (Stalks)
The stalk of
$$\mathcal{F}$$
 at $x \in X$ is colimit
 $\mathcal{F}_x := \varinjlim_{x \in U} \mathcal{F}(U) \cong \coprod_{x \in U} \mathcal{F}(U) / \sim$



< ∃⇒

Important example: Stalks

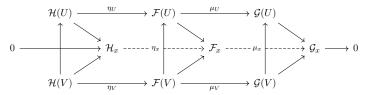
• Fix a sheaf
$$\mathcal{F}: \mathcal{O}(X)^{op} \to \mathcal{C}$$



9/22

Exact

A sequence of sheaves on X, $0 \to \mathcal{H} \xrightarrow{\eta} \mathcal{F} \xrightarrow{\mu} \mathcal{G} \to 0$, induces a sequence

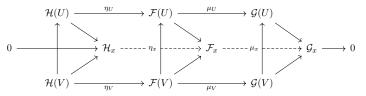


10 / 22

< ∃⇒

Exact

A sequence of sheaves on X, $0 \to \mathcal{H} \xrightarrow{\eta} \mathcal{F} \xrightarrow{\mu} \mathcal{G} \to 0$, induces a sequence



Remark. The original sequence is exact if and only if

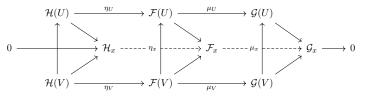
$$0 \to \mathcal{H}_x \to \mathcal{F}_x \to \mathcal{G}_x \to 0$$

is exact $\forall x \in X$.

10 / 22

Exact

A sequence of sheaves on X, $0 \to \mathcal{H} \xrightarrow{\eta} \mathcal{F} \xrightarrow{\mu} \mathcal{G} \to 0$, induces a sequence



Remark. The original sequence is exact if and only if

$$0 \to \mathcal{H}_x \to \mathcal{F}_x \to \mathcal{G}_x \to 0$$

is exact $\forall x \in X$.

Defⁿ: (Ringed Space)

A ringed space is a pair (X, \mathcal{O}_X) of $X \in \text{Top}$, and $\mathcal{O}_X : \mathcal{O}(X)^{op} \to \text{Ring}$ a sheaf of rings

11 / 22

Defⁿ: (Ringed Space)

A ringed space is a pair (X, \mathcal{O}_X) of $X \in \mathbf{Top}$, and $\mathcal{O}_X : \mathcal{O}(X)^{op} \to \mathbf{Ring}$ a sheaf of rings

Defⁿ: (Maps of Ringed Spaces)

A map of ringed spaces $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a pair of maps $\varphi : X \to Y$ and $\varphi^{\#} : \mathcal{O}_Y \to \varphi_* \mathcal{O}_X$

11 / 22

\bullet Fix a continuous map $f:X \to Y$ and a sheaf ${\mathcal F}$ on X over ${\mathcal C}$

12 / 22

$\bullet\,$ Fix a continuous map $f:X\to Y$ and a sheaf ${\mathcal F}$ on X over ${\mathcal C}$

Defⁿ: (Push-forward)

The push-forward of \mathcal{F} along f is the pre-sheaf

$$f_*\mathcal{F}:\mathcal{O}(Y)^{op}\to\mathcal{C}$$

given by $f_*\mathcal{F}(V) = \mathcal{F}(f^{-1}(V))$

12 / 22

Defⁿ: (Maps of Ringed Spaces)

A map of ringed spaces $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a pair of maps $\varphi : X \to Y$ and $\varphi^{\#} : \mathcal{O}_Y \to \varphi_* \mathcal{O}_X$

13/22

Defⁿ: (Maps of Ringed Spaces)

A map of ringed spaces $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a pair of maps $\varphi : X \to Y$ and $\varphi^{\#} : \mathcal{O}_Y \to \varphi_* \mathcal{O}_X$

Defⁿ: (Sheaf of \mathcal{O}_X -modules)

A sheaf of \mathcal{O}_X -modules on (X, \mathcal{O}_X) is a sheaf $\mathcal{F} : \mathcal{O}(X)^{op} \to \mathbf{Ab}$ for which $\forall U \in \mathcal{O}(X), \ \mathcal{F}(U) \in \mathcal{O}_X(U)$ -Mod

13 / 22

Defⁿ: (Maps of Ringed Spaces)

A map of ringed spaces $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a pair of maps $\varphi : X \to Y$ and $\varphi^{\#} : \mathcal{O}_Y \to \varphi_* \mathcal{O}_X$

Defⁿ: (Sheaf of \mathcal{O}_X -modules)

A sheaf of \mathcal{O}_X -modules on (X, \mathcal{O}_X) is a sheaf $\mathcal{F} : \mathcal{O}(X)^{op} \to \mathbf{Ab}$ for which $\forall U \in \mathcal{O}(X), \ \mathcal{F}(U) \in \mathcal{O}_X(U)$ -Mod

14 / 22

Example: Smooth Manifolds Revisited

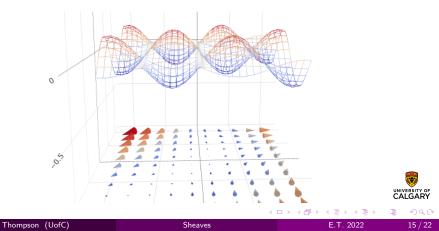
Eg: Smooth Manifolds Revisited

- Let (M, \mathcal{O}_M) be a smooth manifold
- Let $TM = \coprod_{p \in M} T_p M$ denote the tangent bundle
- The sheaf $V: \mathcal{O}(M)^{op} \to \mathbf{Ab}$ of smooth vector fields is a \mathcal{O}_M -Mod

Example: Smooth Manifolds Revisited

Eg: Smooth Manifolds Revisited

- Let (M, \mathcal{O}_M) be a smooth manifold
- Let $TM = \coprod_{p \in M} T_p M$ denote the tangent bundle
- The sheaf $V: \mathcal{O}(M)^{op} \to \mathbf{Ab}$ of smooth vector fields is a \mathcal{O}_M -Mod



• The global sections functor, $\Gamma : \mathcal{O}_X$ -Mod $\to \mathcal{O}_X(X)$ -Mod, is given by $\Gamma(\mathcal{F}) = \mathcal{F}(X)$

16 / 22

イロト 不得下 イヨト イヨト

• The global sections functor, $\Gamma : \mathcal{O}_X$ -Mod $\to \mathcal{O}_X(X)$ -Mod, is given by $\Gamma(\mathcal{F}) = \mathcal{F}(X)$

Example of Surjectivity Failure:

• Let $X = \mathbb{C} \cup \{\infty\}$,

16 / 22

イロト 不得下 イヨト イヨト

• The global sections functor, $\Gamma : \mathcal{O}_X$ -Mod $\to \mathcal{O}_X(X)$ -Mod, is given by $\Gamma(\mathcal{F}) = \mathcal{F}(X)$

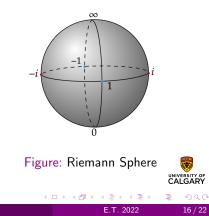
- Let $X = \mathbb{C} \cup \{\infty\}$,
- Let $\mathcal{A}_0, \mathcal{A}_\infty, \mathcal{A} : \mathcal{O}(X)^{op} \to \mathbf{Ab}$ be sheaves of analytic functions, with the ones in \mathcal{A}_0 vanishing at 0 and the ones in \mathcal{A}_∞ vanishing at ∞

• The global sections functor, $\Gamma : \mathcal{O}_X$ -Mod $\to \mathcal{O}_X(X)$ -Mod, is given by $\Gamma(\mathcal{F}) = \mathcal{F}(X)$

- Let $X = \mathbb{C} \cup \{\infty\}$,
- Let $\mathcal{A}_0, \mathcal{A}_\infty, \mathcal{A} : \mathcal{O}(X)^{op} \to \mathbf{Ab}$ be sheaves of analytic functions, with the ones in \mathcal{A}_0 vanishing at 0 and the ones in \mathcal{A}_∞ vanishing at ∞
- Take the map $\mathcal{A}_0 \oplus \mathcal{A}_\infty \to \mathcal{A}$ given by addition

• The global sections functor, $\Gamma : \mathcal{O}_X$ -Mod $\to \mathcal{O}_X(X)$ -Mod, is given by $\Gamma(\mathcal{F}) = \mathcal{F}(X)$

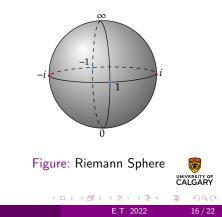
- Let $X = \mathbb{C} \cup \{\infty\}$,
- Let $\mathcal{A}_0, \mathcal{A}_\infty, \mathcal{A} : \mathcal{O}(X)^{op} \to \mathbf{Ab}$ be sheaves of analytic functions, with the ones in \mathcal{A}_0 vanishing at 0 and the ones in \mathcal{A}_∞ vanishing at ∞
- Take the map $\mathcal{A}_0 \oplus \mathcal{A}_\infty \to \mathcal{A}$ given by addition



• The global sections functor, $\Gamma : \mathcal{O}_X$ -Mod $\to \mathcal{O}_X(X)$ -Mod, is given by $\Gamma(\mathcal{F}) = \mathcal{F}(X)$

Sheaves

- Let $X = \mathbb{C} \cup \{\infty\}$,
- Let $\mathcal{A}_0, \mathcal{A}_\infty, \mathcal{A} : \mathcal{O}(X)^{op} \to \mathbf{Ab}$ be sheaves of analytic functions, with the ones in \mathcal{A}_0 vanishing at 0 and the ones in \mathcal{A}_∞ vanishing at ∞
- Take the map $\mathcal{A}_0 \oplus \mathcal{A}_\infty \to \mathcal{A}$ given by addition
- By Liouville's Theorem A(X) consists of all constant functions



• The global sections functor, $\Gamma : \mathcal{O}_X$ -Mod $\to \mathcal{O}_X(X)$ -Mod, is given by $\Gamma(\mathcal{F}) = \mathcal{F}(X)$

Prop

 Γ is a left-exact functor

Proof Idea: Let $0 \to \mathcal{H} \xrightarrow{\eta} \mathcal{F} \xrightarrow{\mu} \mathcal{G} \to 0$ be a SES. This induces a diagram

(

Remark. We want to measure the failure of Γ to be right-exact.

18 / 22

▶ < ∃ >

E.T. 2022

Image: Image:

Remark. We want to measure the failure of Γ to be right-exact.

Construction. To extend Γ , for each $\mathcal{F} \in \mathcal{O}_X$ -**Mod** we "take an injective resolution" $0 \to \mathcal{F} \to \mathcal{I}_{\bullet}$ and set

$$R^n\Gamma(\mathcal{F}) = H^n(\Gamma(\mathcal{I}_{\bullet}))$$

for $n \in \mathbb{Z}_{\geq 0}$.

18 / 22

イロト イボト イヨト イヨト

Remark. We want to measure the failure of Γ to be right-exact.

Construction. To extend Γ , for each $\mathcal{F} \in \mathcal{O}_X$ -**Mod** we "take an injective resolution" $0 \to \mathcal{F} \to \mathcal{I}_{\bullet}$ and set

$$R^n\Gamma(\mathcal{F}) = H^n(\Gamma(\mathcal{I}_{\bullet}))$$

for $n \in \mathbb{Z}_{\geq 0}$.

Question. Does every $\mathcal{F} \in \mathcal{O}_X$ -Mod have an injective resolution?

18 / 22

The category \mathcal{O}_X -**Mod** has enough injectives.

19/22

< ∃⇒

The category \mathcal{O}_X -**Mod** has enough injectives.

Proof Sketch. Fix $\mathcal{F} \in \mathcal{O}_X$ -Mod.

19/22

< ∃⇒

The category \mathcal{O}_X -**Mod** has enough injectives.

Proof Sketch. Fix $\mathcal{F} \in \mathcal{O}_X$ -Mod.

• $\forall x \in X$, $\mathcal{O}_{X,x}$ -**Mod** has enough injectives.

19/22

The category \mathcal{O}_X -**Mod** has enough injectives.

Proof Sketch. Fix $\mathcal{F} \in \mathcal{O}_X$ -Mod.

• $\forall x \in X$, $\mathcal{O}_{X,x}$ -**Mod** has enough injectives.

•
$$\implies \forall x \in X, \ \exists \iota_x : \mathcal{F}_x \hookrightarrow \mathcal{I}(x) \text{ in } \mathcal{O}_{X,x}\text{-}\mathsf{Mod}$$

19/22

The category \mathcal{O}_X -**Mod** has enough injectives.

Proof Sketch. Fix $\mathcal{F} \in \mathcal{O}_X$ -Mod.

• $\forall x \in X$, $\mathcal{O}_{X,x}$ -**Mod** has enough injectives.

•
$$\implies \forall x \in X, \ \exists \iota_x : \mathcal{F}_x \hookrightarrow \mathcal{I}(x) \text{ in } \mathcal{O}_{X,x}\text{-}\mathsf{Mod}$$

• Define $\mathcal{I}:\mathcal{O}(X)^{op}\to \mathbf{Ab}$ by $\mathcal{I}(U)=\prod_{x\in U}\mathcal{I}(x)$

19/22

The category \mathcal{O}_X -**Mod** has enough injectives.

Proof Sketch. Fix $\mathcal{F} \in \mathcal{O}_X$ -Mod.

• $\forall x \in X$, $\mathcal{O}_{X,x}$ -**Mod** has enough injectives.

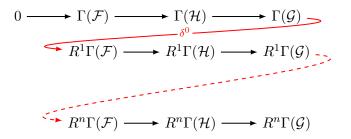
•
$$\implies \forall x \in X, \exists \iota_x : \mathcal{F}_x \hookrightarrow \mathcal{I}(x) \text{ in } \mathcal{O}_{X,x}\text{-}\mathsf{Mod}$$

- Define $\mathcal{I}:\mathcal{O}(X)^{op}\to \mathbf{Ab}$ by $\mathcal{I}(U)=\prod_{x\in U}\mathcal{I}(x)$
- It can be shown $\mathcal{I} \in \mathcal{O}_X$ -**Mod** is injective, and the induced map $\iota : \mathcal{F} \hookrightarrow \mathcal{I}$ is a monomorphism

19/22

Cor

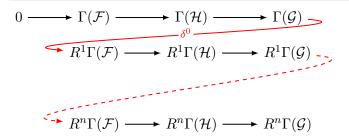
A SES of \mathcal{O}_X -modules, $0 \to \mathcal{F} \to \mathcal{H} \to \mathcal{G} \to 0$, induces a long-exact sequence



イロト 不得下 イヨト イヨト

Cor

A SES of \mathcal{O}_X -modules, $0 \to \mathcal{F} \to \mathcal{H} \to \mathcal{G} \to 0$, induces a long-exact sequence

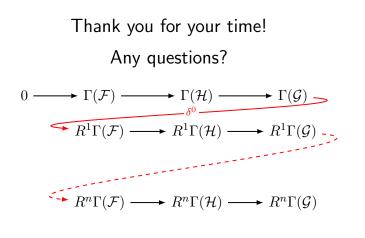


Canonical Example:

Studying global properties of the complex logarithm

20 / 22

イロト イヨト イヨト -



イロト 不得 トイヨト イヨト

References I

- P. Achar. Perverse Sheaves and Applications to Representation Theory. Mathematical Surveys and Monographs. American Mathematical Society, 2021. ISBN: 9781470455972.
- [2] U. Bruzzo and B. Otero. Derived Functors and Sheaf Cohomology. Contemporary Mathematics and Its Applications: Monographs, E Series. World Scientific, 2020. ISBN: 9789811207280.
- [3] D. Eisenbud and J. Harris. The Geometry of Schemes. Graduate Texts in Mathematics. Springer, 2000. ISBN: 9780387986388.
- S. Gelfand and Y. Manin. *Methods of Homological Algebra*. Springer Monographs in Mathematics. Springer Berlin Heidelberg, 2002. ISBN: 9783540435839.
- [5] nLab authors. manifold. https://ncatlab.org/nlab/show/manifold. Revision 49. Nov. 2022.

E.T. 2022

22 / 22