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Classifying Spaces up to Continuous Deformations

A-chain for Sphere: [3]

0 dim =3
— }
ZLg dim =2
Figure: A sphere with a 0 dim=1
specified vertex.
Zv dim = O
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Categories

Def" [6, Defn 1.1.1]: Categories

A category, C, consists of a collection of objects and maps between objects
which can be composed.

15C B

N

1,.C A—> C Dic

[N
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Functors

Def" [6, Defn 1.3.1]: Functors

A functor F': A — B between categories is a function F on objects and
functions F'4 g on maps such that

1F(B)(f)C:) o) (9)
FA,V \Flj,c g

Lr(a) C F(A) Fr (ool » F(C) :) Lpcc)

[N

UNIVERSITY OF
G

Thompson (UofC) Polynomial Functors E.T. 2024 5/14



Polynomial Approximations

How can we simplify and study functors of the form F': B — Ch(Ab)?

a@r
\%wy/‘ﬁ
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Polynomial Approximations
How can we simplify and study functors of the form F': B — Ch(Ab)? I

Solution: Introduce a chain of simpler functors P,(F) : B — Ch(Ab),
n € N, which “approximate” F'in the limit [4]:

— F >~
(/p”“p"l et =
e ~
H(Fj Pn—l(F) > S Po(F)

' PTH— 1 ( F) qn+1 q1

e\ /2l
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Construction: Cross-Effects

What does it mean for a
functor F': B — Ch(Ab) to
be “simple”?

B
Cong?
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Construction: Cross-Effects

ax

mx+b

What does it mean for a
functor F': B — Ch(Ab) to
be “simple”?

/)

Figure: Cubic and shifted linear plots.

B
Cong?
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Construction: Cross-Effects

mx+b

Figure: Cubic and shifted linear plots.

Measuring Defect
For f: R — R, the defect to being polynomial can be measured by using
cross-effects, such as

cri(f)(z) = flz) — f0)
cra(f)(z,9) = en(N(z+y) — en(H(x) — en(H(y)

™ = — — Tyt

and

=Y
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Construction: Cross-Effects

Remark: We can generalize the definition to functors in a natural way
using the implicit definition [2]

cri(F)(4) ® F(0) = F(A)
and

cra(F)(A, B) @ cri(F)(A) @ eri(F)(B) = e (F)(A © B)

B
Cong?
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Construction: Cross-Effects

Remark: We can generalize the definition to functors in a natural way
using the implicit definition [2]
cri(F)(A) @ F(0) = F(A)
and
cra(F)(A, B) @ cri(F)(A) @ cri(F)(B) 2 cr(F)(A® B)

Example: “f(x)=x+a"

Let A € Ab and let T4 : Ab — Ch(Ab) be given by
Ty(B)y=--+-—0—0— A® B. Then

cri(Ty)(B)=---—-0—0—B
and
cra(Ty)(B,C)=---—-0—-0—0

o
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Construction: Polynomial Functors

Defn: Zeroth Polynomial Approximation [4]

Py(F) is given by resolving F' with respect to cross-effects, forming the
inclusion o cr:{’(F) cr%(F) cri (F)
> 0 > 0 y F
into F isolated in degree 0, and then “totalizing”.
If F=..-— 0 — 0 — Fj, then this becomes the augmented complex:
o —— Cr‘;’(Fo) — Cr%(Fo) — CI’1(F0) — F()

;\@ﬁ
[\ /1
R\
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Construction: Polynomial Functors

Defn: Zeroth Polynomial Approximation [4]

Py(F) is given by resolving F' with respect to cross-effects, forming the
inclusion o cr:{’(F) cr%(F) cri (F)
> 0 > 0 y F
into F isolated in degree 0, and then “totalizing”.
If F=..-— 0 — 0 — Fj, then this becomes the augmented complex:
o —— Cr‘;’(Fo) — Cr%(Fo) — CI’1(F0) — F()

Example: For T4 : Ab — Ch(Ab),
P(T)(B)=-—B2%B%B% AaB

;\@ﬁ
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Construction: Polynomial Functors

Defn: Zeroth Polynomial Approximation [4]

Py(F) is given by resolving F' with respect to cross-effects, forming the
inclusion o cr:{’(F) cr%(F) cri (F)
> 0 > 0 y F
into F isolated in degree 0, and then “totalizing”.
If F=..-— 0 — 0 — Fj, then this becomes the augmented complex:
o —— Cr‘;’(Fo) — Cr%(Fo) — CI’1(F0) — F()

Example: For T4 : Ab — Ch(Ab),
Po(Ty)(B) = . B BY B AgB
After contracting:
Po(Ta)(B)~-0—=0—0— A 9
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Key Takeaways:

[ Algebraic invariants help classify spaces

O Algebraic invariants are rich in
properties

[0 Invariants can be approximated in terms Ppii(F)

of Taylor series-like methods _—

[0 These approximations can be
constructed concretely for chain

complexes _— n _
P E‘Tﬂﬂ‘ﬂ?/ﬁ% v et
St

B
G
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