Approximating Invariants through Polynomial Functors

E Ea T¹

Supervisor: Dr. Kristine Bauer¹

¹Faculty of Science University of Calgary

Math 518 Final Presentation

Roadmap

Geometric Motivation/History

- 1 Slides

Classifying spaces by invariants

Chain complexes and algebraic topology

Polynomial Functors

- 7 Slides

What is a functor?

Polynomial approximation: the goal

Polynomial approximation: the construction

Classifying Spaces up to Continuous Deformations

Figure: A sphere with a specified vertex.

Δ -chain for Sphere: [3]

Categories

Defⁿ [6, Defn 1.1.1]: Categories

A category, \mathcal{C} , consists of a collection of objects and maps between objects which can be composed.

Functors

Defⁿ [6, Defn 1.3.1]: Functors

A functor $F: \mathcal{A} \to \mathcal{B}$ between categories is a function F on objects and functions $F_{A,B}$ on maps such that

5/14

Polynomial Approximations

Goal:

How can we simplify and study functors of the form $F: \mathcal{B} \to \mathsf{Ch}(\mathsf{Ab})$?

Polynomial Approximations

Goal:

How can we simplify and study functors of the form $F: \mathcal{B} \to \mathsf{Ch}(\mathsf{Ab})$?

Solution: Introduce a chain of simpler functors $P_n(F): \mathcal{B} \to \mathsf{Ch}(\mathsf{Ab})$, $n \in \mathbb{N}$, which "approximate" F in the limit [4]:

Question:

What does it mean for a functor $F: \mathcal{B} \to \mathsf{Ch}(\mathsf{Ab})$ to be "simple"?

Question:

What does it mean for a functor $F: \mathcal{B} \to \mathsf{Ch}(\mathsf{Ab})$ to be "simple"?

Figure: Cubic and shifted linear plots.

Figure: Cubic and shifted linear plots.

Measuring Defect

For $f \colon \mathbb{R} \to \mathbb{R}$, the defect to being polynomial can be measured by using cross-effects, such as

$$\operatorname{cr}_1(f)(x) = f(x) - f(0)$$

and

$$\operatorname{cr}_2(f)(x, y) = \operatorname{cr}_1(f)(x + y) - \operatorname{cr}_1(f)(x) - \operatorname{cr}_1(f)(y)$$

Thompson (UofC) Polynomial Functors E.T. 2024

Remark: We can generalize the definition to functors in a natural way using the implicit definition [2]

$$\operatorname{cr}_1(F)(A) \oplus F(0) \cong F(A)$$

and

$$\operatorname{cr}_2(F)(A,B) \oplus \operatorname{cr}_1(F)(A) \oplus \operatorname{cr}_1(F)(B) \cong \operatorname{cr}_1(F)(A \oplus B)$$

Remark: We can generalize the definition to functors in a natural way using the implicit definition [2]

$$\operatorname{cr}_1(F)(A) \oplus F(0) \cong F(A)$$

and

$$\operatorname{cr}_2(F)(A,B) \oplus \operatorname{cr}_1(F)(A) \oplus \operatorname{cr}_1(F)(B) \cong \operatorname{cr}_1(F)(A \oplus B)$$

Example: "f(x)=x+a"

Let $A \in \mathsf{Ab}$ and let $T_A : \mathsf{Ab} \to \mathsf{Ch}(\mathsf{Ab})$ be given by

$$T_A(B) = \cdots \to 0 \to 0 \to A \oplus B$$
. Then

$$\operatorname{cr}_1(T_A)(B) \cong \cdots \to 0 \to 0 \to B$$

and

$$\operatorname{cr}_2(T_A)(B,C) \cong \cdots \to 0 \to 0 \to 0$$

10 / 14

Thompson (UofC) Polynomial Functors E.T. 2024

Construction: Polynomial Functors

Defn: Zeroth Polynomial Approximation [4]

 $P_0(F)$ is given by resolving F with respect to cross-effects, forming the inclusion $\cdots \longrightarrow \operatorname{cr}_1^3(F) \longrightarrow \operatorname{cr}_1^2(F) \longrightarrow \operatorname{cr}_1(F)$

into ${\cal F}$ isolated in degree 0, and then "totalizing".

If $F = \cdots \rightarrow 0 \rightarrow 0 \rightarrow F_0$, then this becomes the augmented complex:

$$\cdots \longrightarrow \operatorname{cr}_1^3(F_0) \longrightarrow \operatorname{cr}_1^2(F_0) \longrightarrow \operatorname{cr}_1(F_0) \longrightarrow F_0$$

Construction: Polynomial Functors

Defn: Zeroth Polynomial Approximation [4]

 $P_0(F)$ is given by resolving F with respect to cross-effects, forming the inclusion $\cdots \longrightarrow \operatorname{cr}_1^3(F) \longrightarrow \operatorname{cr}_1^2(F) \longrightarrow \operatorname{cr}_1(F)$

into ${\cal F}$ isolated in degree 0, and then "totalizing".

If $F = \cdots \rightarrow 0 \rightarrow 0 \rightarrow F_0$, then this becomes the augmented complex:

$$\cdots \longrightarrow \operatorname{cr}_1^3(F_0) \longrightarrow \operatorname{cr}_1^2(F_0) \longrightarrow \operatorname{cr}_1(F_0) \longrightarrow F_0$$

Example: For $T_A : \mathsf{Ab} \to \mathsf{Ch}(\mathsf{Ab})$,

$$P_0(T_A)(B) = \cdots \to B \xrightarrow{1_B} B \xrightarrow{0} B \xrightarrow{i} A \oplus B$$

E.T. 2024

Construction: Polynomial Functors

Defn: Zeroth Polynomial Approximation [4]

 $P_0(F)$ is given by resolving F with respect to cross-effects, forming the inclusion $\cdots \longrightarrow \operatorname{cr}_1^3(F) \longrightarrow \operatorname{cr}_1^2(F) \longrightarrow \operatorname{cr}_1(F)$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\
\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow F$$

into ${\cal F}$ isolated in degree 0, and then "totalizing".

If $F = \cdots \rightarrow 0 \rightarrow 0 \rightarrow F_0$, then this becomes the augmented complex:

$$\cdots \longrightarrow \operatorname{cr}_1^3(F_0) \longrightarrow \operatorname{cr}_1^2(F_0) \longrightarrow \operatorname{cr}_1(F_0) \longrightarrow F_0$$

Example: For $T_A : \mathsf{Ab} \to \mathsf{Ch}(\mathsf{Ab})$,

$$P_0(T_A)(B) = \cdots \to B \xrightarrow{1_B} B \xrightarrow{0} B \xrightarrow{i} A \oplus B$$

After contracting:

$$P_0(T_A)(B) \simeq \cdots 0 \to 0 \to 0 \to A$$

11/14

Thompson (UofC) Polynomial Functors E.T. 2024

Key Takeaways:

- ☐ Algebraic invariants help classify spaces
- ☐ Algebraic invariants are rich in properties
- ☐ Invariants can be approximated in terms of Taylor series-like methods
- ☐ These approximations can be constructed concretely for chain complexes

Figure: Mobius strip diagram [1].

E.T. 2024

12 / 14

References I

- [1] Ag2gaeh. Möbius strip. File: Moebiusband-1s.svg. 2018. URL: https://commons.wikimedia.org/wiki/File:Moebiusband-1s.svg.
- [2] S. Eilenberg and S. MacLane. "On the Groups H(∏, n), II: Methods of Computation". In: *Annals of Mathematics* 60.1 (1954), pp. 49–139. ISSN: 0003486X. URL: http://www.jstor.org/stable/1969702.
- [3] A. Hatcher. Algebraic Topology. Algebraic Topology. Cambridge University Press, 2002. ISBN: 9780521795401. URL: https://books.google.ca/books?id=BjKs86kosqgC.
- [4] B. Johnson and R. McCarthy. "Deriving calculus with cotriples". eng. In: Transactions of the American Mathematical Society 356.2 (2004), pp. 757–803. ISSN: 0002-9947.

Thompson (UofC) Polynomial Functors E.T. 2024 13/14

References II

- [5] Nadiinko. Math icon. Flaticon. (Accessed March 3, 2024). URL: https://www.flaticon.com/freeicon/math_13969819?term=math+knot&page=1&position=5& origin=search&related_id=13969819.
- [6] E. Riehl. *Category Theory in Context*. Aurora: Dover Modern Math Originals. Dover Publications, 2017. ISBN: 9780486820804.
- [7] C. A. Weibel. "CHAPTER 28 History of Homological Algebra". In: History of Topology. Ed. by I. James. Amsterdam: North-Holland, 1999, pp. 797–836. ISBN: 978-0-444-82375-5. DOI:

https://doi.org/10.1016/B978-044482375-5/50029-8. URL: https://www.sciencedirect.com/science/article/pii/B9780444823755500298.

14 / 14