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Abstract

A fundamental tool in algebraic topology is the use of algebraic objects to classify spaces up to a
suitable notion of equivalence, namely homotopy equivalence. These algebraic objects are designed
to be invariant under changes in a space up to equivalence, and can be described formally in the
language of functors. In the modern literature, invariants themselves have rich and complicated struc-
tures, and are of mathematical interest in their own right. In this thesis we introduce a method for
approximating invariants by simpler objects, known as polynomial functors, in analogy with the use
of Taylor polynomials in analysis. Historically these polynomial functors have been defined only up
to weak equivalence, as in [Goo03]. We provide an explicit construction of these polynomial functors,
in line with [JM04] and [BJO+18], in the case when our invariants are valued in chain complexes.
Further, using techniques from homological algebra and category theory we show that our constructed
polynomial functors satisfy a global property as universal approximations, extending the universality
properties proved in [JM04] and [BJO+18].

1 Introduction

Since the origin of the field, topologists have been concerned with how to analyze and distin-
guish topological spaces. Following observations by Emmy Noether in the early 1900s [Wei99],
it was found that spaces can be studied using algebraic objects called invariants, such as cer-
tain chain complexes of abelian groups.

These observations transform the classification of topological spaces into the study of alge-
braic invariants. However, the study of invariants has itself evolved into an incredibly rich
field with a number of powerful objects such as de Rham Cohomology for smooth manifolds,
Hochschild Homology for associative algebras, and even Topological K-Theory which stud-
ies vector bundles on topological spaces [Wei99]. From the early 1990s through the early
2000s, Thomas Goodwillie began the development of a theory that approximates invariants
through towers of simpler invariants called “polynomial functors”, strongly in analogy with
Taylor series in calculus [Goo90, Goo92, Goo03]. At about the same time, Johnson and Mc-
Carthy performed an analogous construction for invariants valued in chain complexes such
that the resulting approximations are universal up to a notion of weak equivalence called
quasi-isomorphism [JM04]. Bauer et al. built on this construction in [BJO+18], providing ex-
plicit models for the polynomial functors and showing that they satisfy a stronger universality
property in terms of pointwise chain homotopies.

In this paper we will perform the constructions of [JM04] and [BJO+18] in terms of chain
complexes valued in modules over a ring. Through this process we will demonstrate that
the constructions in each paper agree up to natural chain homotopy equivalence. Following
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this initial construction and comparison we will prove the primary result of the thesis, Theo-
rem 3.11. Theorem 3.11 establishes a universal property for polynomial functors which holds
up to natural chain homotopy equivalence. This is stronger than the result in [JM04] (which
holds up to quasi-isomorphism) or [BJO+18] (which holds up to pointwise chain homotopy
equivalence). Finally, to help illustrate the construction, the first degree polynomial functors
for two simple operations appearing in linear algebra will be computed.

Acknowledgements: I would like to acknowledge and express my deep gratitude for the
support of Dr. Kristine Bauer, Dr. Jason Parker, and PhD student Florian Schwarz, who
provided a number of valuable insights throughout the duration of the project. I would
also like to thank Dr. Balehowsky and Dr. Rios for their assistance in the formatting and
structuring of my thesis and presentation.

2 Background Information

2.1 Categorical Preliminaries for Invariants of Spaces

In order to rigorously define and study algebraic invariants we require the notion of categories
and functors. A category can be informally thought of as a universe consisting of similar math-
ematical objects with functions between them that preserve their structure. Although it is not
the original reference, we will primarily refer to [Rie17] for our categorical background.

Definition 2.1 [Rie17, Defn. 1.1.1] A category C consists of the following data:
• A class of mathematical objects, Ob(C)
• For any pair of objects, A,B ∈ Ob(C), a set of maps, or arrows, C(A,B)
• For every object A ∈ Ob(C), a chosen map 1A ∈ C(A,A)
• For every pair of maps f : A→ B and g : B → C, a composite map g ◦f : A→ C

where composition is associative and for f : A→ B, f ◦ 1A = f = 1B ◦ f .

A map f : A→ B is said to be an isomorphism if there exists an inverse map g : B → A
such that f ◦ g = 1B and g ◦ f = 1A.

For our study the primary categories to keep in mind are the category Top∗ of topological
spaces with base points and continuous maps that preserve base points, the category Ab of
abelian groups and group homomorphisms, and the category R-Mod of modules over a ring R
with R-module maps. Here an R-module is an abelian group M with a scalar multiplication
operation R × M → M satisfying the same axioms as that for vector spaces. A map of
R-modules f : M → N is then a map of abelian groups which is linear with respect to the
scaling operation from R.

In [BJO+18], a generalization of the category Ab, known as abelian categories, is used. How-
ever, the arguments we will use in this thesis will generalize to that case using the Freyd-
Mitchell Embedding Theorem which says that any abelian category can be embedded into a
category of R-modules for some ring R [Wei94, Thm 1.6.1]. This will allow us to work in a
suitable level of generality while making the proofs accessible to a wider audience.

Next, as with the objects we consider inside of categories, we want a way to map between
categories. Such a map should send all the data in one category to appropriate data in another
category while preserving the conditions on that data. This brings us to the definition of a
functor.
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Definition 2.2 [Rie17, Defn. 1.3.1] A functor F : A → B between categories A and
B consists of a map of objects, F : Ob(A) → Ob(B), and for every pair of objects,
A,A′ ∈ Ob(A), a map of arrows:

FA,A′ : A(A,A′)→ B(F (A), F (A′))

The arrow maps are required to preserve identities and composition. That is,

FA,A(1A) = 1F (A) and for A
f−→ A′ g−→ A′′, FA,A′′(g ◦ f) = FA′,A′′(g) ◦ FA,A′(f).

For simplicity of notation we will often hide the subscripts when talking about functors applied
to maps. With categories and functors defined we are able to understand the initial statement
of our problem; how do we simplify and study algebraic invariants which depend functorially
on the space being considered? Explicitly, functorial algebraic invariants of spaces are functors
F : Top∗ → C which send homotopy equivalences, or other appropriate weak equivalences of
spaces, to suitable equivalences in the category C, where C is a category of algebraic objects
like Ab. A prime example of functorial invariants are the higher fundamental groups, which
are described by a family of functors πn : Top∗ → Ab, for n ≥ 2 (see e.g. [Hat02, p. 97]).

Now, the general philosophy of category theory suggests that there should be an appropriate
notion of maps between functors, so that functors along with these maps can themselves form
a category. These are precisely natural transformations α : F ⇒ G, for functors F,G : A → B.
A natural transformation α consists of a family of maps αA : F (A)→ G(A) in B for A ∈ Ob(A)
such that for any f : A→ A′ in A, we have the square

F (A) F (A′)

G(A) G(A′)

F (f)

αA

G(f)

αA′

which commutes in the sense that αA′ ◦ F (f) = G(f) ◦ αA. Natural transformations are
essential for comparing functors, and will be extremely important in our construction of
polynomial approximations to a functor.

Given a natural transformation α : F ⇒ G between functors F,G : A → B, as well as functors
H : D → A and K : B → C, we can perform an operation called whiskering [Rie17, p. 47]
to create a natural transformation KαH : KFH ⇒ KGH given on an object D ∈ Ob(D)
by

(KαH)D := K(αH(D))

Whiskering will also be very important for constructing certain resolutions that go into our
definition of polynomial functors.

Hereafter, for categories A and B we will let Fun(B,A) denote the category with objects
functors and maps natural transformations between functors. These will be our primary
categories of study, where A will either be R-Mod for some ring R, or the category of chain
complexes valued in R-Mod. Moving forward we will fix the notation R for a ring.

2.2 Homotopies: From Spaces to Chain Complexes

A common notion of equivalence for topological spaces seen in introductory classes is home-
omorphism. However, algebraic topologists are often interested in weaker notions of equiv-
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alence. The central motivating example for this thesis is the notion of two spaces being
homotopic (see e.g. [Hat02, p. 3]).

Definition 2.3 Two continuous functions f, g : X → Y between topological spaces are
said to be homotopic if there exists a continuous deformation H : X × [0, 1]→ Y such
that H(x, 0) = f(x) and H(x, 1) = g(x). In this case we write f ≃ g.
Two spaces X and Y are said to be homotopy equivalent, denoted X ≃ Y , if there exist
continuous functions f : X → Y and g : Y → X such that g ◦ f ≃ 1X and f ◦ g ≃ 1Y .

Note that the main difference between spaces being homotopy equivalent versus homeomorphic
is that the composition of maps is only required to be homotopic to the identities, rather than
equal.

In order to deal with weak notions of equivalences, like homotopies in topological spaces, in
our setting, we need to replace our module categories by appropriate homotopical analogues
where we can introduce properties up to weak equivalence. A concrete approach that can be
taken, and which will be the focus of this thesis, is the introduction of chain complexes on a
module category [DS95].

A chain complex A• in R-Mod consists of a sequence of R-modules An, n ∈ Z, together with
module maps forming a chain

· · · → An+2
∂n+2−−−→ An+1

∂n+1−−−→ An
∂n−→ An−1

∂n−1−−−→ An−2 → · · · (1)

such that for any n ∈ Z ∂n ◦ ∂n+1 = 0 is the zero map, or equivalently Im(∂n+1) ⊆ ker(∂n).
Chain complexes originally appeared in abstract algebra, but since have found tremendous
use in algebraic topology. In algebraic topology the degree to which Im(∂n+1) fails to equal
ker(∂n) is used to encode topological information about the space being considered, such as
in detecting holes in the space.

To define a category of chain complexes we need maps. A map of chain complexes f• : A• → B•
is a collection of maps fn : An → Bn, n ∈ Z, which commute with boundaries in the sense
that ∂B

n ◦ fn = fn−1 ◦ ∂A
n . In other words, we can think of a chain map as a type of natural

transformation. Together this data defines a category Ch(R-Mod) of chain complexes valued
in R-Mod with chain maps between chain complexes as arrows.

We have a natural way of encoding the data in R-Mod in our new category Ch(R-Mod). This
is done using a functor which sends an R-module A to the chain complex with A in degree
zero and 0’s elsewhere. This encoding is the first sign that Ch(R-Mod) is a good candidate for
enriching R-Mod to a category in which weaker equivalences can be considered. For technical
reasons associated with certain finiteness conditions we will be restricting our study to the
sub-category Ch≥0(R-Mod) of chain complexes with non-zero entries only in degrees ≥ 0. In
this setting we denote the described functor by degR-Mod

0 : R-Mod ↪→ Ch≥0(R-Mod), and refer
to it as the degree zero inclusion functor for R-Mod in Ch≥0(R-Mod).

Now that we understand how to embed R-Mod into Ch≥0(R-Mod), we need an appropriate
notion of weak equivalence on the objects in the category Ch≥0(R-Mod) of chain complexes,
analogous to that of homotopy equivalence for topological spaces. In this paper we will work
with chain homotopy equivalences. For this and future definitions in homological algebra we
will primarily refer to the text [Wei94].
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Definition 2.4 [Wei94, Defn. 1.4.4] A chain homotopy between chain maps f, g : A• →
B• is a collection of maps sn : An → Bn+1, n ∈ Z, such that

fn − gn = ∂B
n+1 ◦ sn + sn−1 ◦ ∂A

n

In this case we write f ≃ g. Two chain complexes A• and B• are said to be chain
homotopy equivalent if we have chain maps f : A• → B• and g : B• → A• such that
g ◦ f ≃ 1A• and f ◦ g ≃ 1B• .

Although this definition of chain homotopy may appear to be esoteric at first glance, after
suitable reformulation it is equivalent to that of topological homotopies.

For the work in [JM04], Johnson and McCarthy consider a slightly weaker notion of equiv-
alence than that given by chain homotopies. Explicitly, Johnson and McCarthy consider
quasi-isomorphisms of chain complexes. For the purpose of this thesis the technical defini-
tion of quasi-isomorphisms is unnecessary as we will only use the well-known result in the
literature that chain homotopy equivalences are necessarily quasi-isomorphisms [Wei94, Lem
1.4.5]. On the other hand, there are chain complexes which are quasi-isomorphic but not
chain homotopy equivalent, so quasi-isomorphisms are strictly weaker than chain homotopy
equivalences.

2.3 Mapping Cones

For our comparison with the construction in [JM04] an important tool is the mapping cone,
which has origins in topology. The mapping cone can be constructed directly without reference
to other concepts, but for our purposes it is best to first introduce the totalization functor
which will prove essential in other parts of our construction.

The definition of the total complex functor relies on the observation that we can form chain
complexes in the category of chain complexes Ch≥0(R-Mod) itself to obtain a category of chain
complexes of chain complexes, Ch≥0(Ch≥0(R-Mod)). The objects of this category are called
bicomplexes, A•,•, and pictorially they can be represented as follows

...
...

...

· · · A2,2 A1,2 A0,2

· · · A2,1 A1,1 A0,1

· · · A2,0 A1,0 A0,0

∂h
1,1

∂v
0,1∂v

1,1

∂h
1,0∂h

2,0

∂v
2,1

∂h
2,1

∂v
0,2∂v

2,2

∂h
2,2 ∂h

1,2

∂v
1,2

where for each n,m ∈ Z, ∂h
n,m : An,m → An−1,m and ∂v

n,m : An,m → An,m−1 denote the
horizontal and vertical boundary maps, respectively. Each row and each column of a bicomplex
is a chain complex in its own right, so ∂h

n,m◦∂h
n+1,m = 0 and ∂v

n,m◦∂v
n,m+1 = 0 for all n,m ∈ Z.

The totalization is then a functor which collapses a bicomplex of this form into a single chain
complex. In particular, it provides a chain complex which encodes the vertical and horizontal
chain complexes in the bicomplex simultaneously.
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Definition 2.5 [Wei94, Sec. 1.2.6] We define a functor Tot : Ch≥0(Ch≥0(R-Mod)) →
Ch≥0(R-Mod) by sending (A•,•, ∂•,•) ∈ Ch≥0(Ch≥0(A)) to (Tot(A•,•)•, ∂

Tot
• ) with

Tot(A•,•)n = A0,n ⊕A1,n−1 ⊕ · · · ⊕An,0

and

∂Tot
n : A0,n ⊕A1,n−1 ⊕ · · · ⊕An,0 → A0,n−1 ⊕A1,n−2 ⊕ · · · ⊕An−1,0,

(a0, a1, ..., an) 7→ (∂h
1,n−1(a1) + ∂v

0,n(a0), ..., ∂
h
n,0(an) + (−1)n∂v

n−1,1(an−1))

where the alternating signs on the vertical boundary maps appear to ensure that ∂Tot
n

satisfies the boundary condition [Wei94, Sec. 1.2.5-6].
Given a map f•,• : A•,• → B•,•, Tot(f•,•) acts componentwise so

Tot(f•,•)n(a0, ..., an) := (f0,n(a0), f1,n−1(a1), ..., fn,0(an)), ∀n ≥ 0, (a0, ..., an) ∈ Tot(A•,•)n

Using this construction we can now define the mapping cone for a chain map, f• : A• → B•.
This definition relies on the observation that we can use a chain map to build a bicomplex
where the vertical boundaries are the chain map, ∂v

n,1 := fn, or zero maps, and the horizontal
boundaries are given by the boundaries of A•, the boundaries of B•, or zero maps, depending
on the row being considered.

Definition 2.6 [Wei94, Sec. 1.5.1] The mapping cone for a chain map f• : A• → B•,
denoted cone(f•), is given by the totalization of the bicomplex

· · · A2 A1 A0

· · · B2 B1 B0

∂A
2 ∂A

1

∂B
2 ∂B

1

f2 f1 f2

with B• located in the 0th row, A• located in the 1st row, and all other rows being 0s.

The boundary maps for the mapping cone can be described by simple 2× 2 matrices

An−1 ⊕Bn

 ∂A
n−1 0

(−1)n−1fn−1 ∂B
n


−−−−−−−−−−−−−−−−→ An−2 ⊕Bn−1,(

a
b

)
7−→

(
∂A
n−1(a)

(−1)n−1fn−1(a) + ∂B
n (b))

)
when we notate the elements of the direct sums An−1 ⊕ Bn and An−2 ⊕ Bn−1 as column
vectors. This matrix notation will be incredibly convenient for the comparison with [JM04]
as the composition of maps in this notation is exactly given by matrix multiplication.

3 Universal Polynomial Approximations

3.1 Cross-Effects

Our primary goal in this work is to construct universal approximation functors valued in chain
complexes. Up to a suitable notion of homotopy of functors, made precise below, we will also
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show that our construction is equivalent to that in [JM04]. However, this raises an important
question: what properties should our approximate functors satisfy so that they are easier to
manipulate than our original abstract functors? The primary answer to this question comes
from preserving the structure of spaces built up from smaller spaces.

The category of topological spaces with base points, Top∗, has two properties which are
important for this work. First, since maps in Top∗ are continuous maps that preserve base
points, every topological space X with base point x0 has a unique map from the singleton
space {∗}, sending ∗ to x0. From this observation the singleton space {∗} has the important
property that every object in Top∗ has a unique map both into and out of it. In addition to
this characteristic, Top∗ has a construction which produces a space X ∨Y from spaces X and
Y by identifying the specified base points in X and Y . An invariant F : Top∗ → A which
sends X ∨ Y to F (X)⊕ F (Y ) is then valuable as it encodes this decomposition of the space
(recall A denotes either R-Mod or Ch≥0(R-Mod)). This property can be considered to be a
form of additivity for our functorial invariants.

In general, we will consider functors F : B → A where B is a category with properties similar
to that of Top∗. In particular, we will ask that B has a base point object, ∗, which has unique
maps into and out of all other objects. We will also ask that any two objects B,B′ in B can
be joined to form an object B ∨B′ with natural inclusions B → B ∨ B′ ← B′. For example,
if B is the category of R-modules (respectively, chain complexes of R-modules) then it has
a base point object given by the 0 module (respectively, the chain of 0 modules) and a join
operation given by direct sums, ⊕. We will fix such a category B hereafter, where the reader
can replace B by Top∗ or A throughout.

In this context F is said to be additive if it preserves the base point, F (∗) ∼= 0, and for any
pair of objects B and B′ in B, the map formed out of the inclusions for B ∨B′,

F (B)⊕ F (B′)→ F (B ∨B′)

is an isomorphism [Mac71, p. 197]. When B = S-Mod or Ch≥0(S-Mod) for a ring S, F : B → A
being additive is equivalent to FB,B′ : B(B,B′) → A(F (B), F (B′)) being a homomorphism
of abelian groups for any objects B,B′ ∈ Ob(B) [Mac71, p. 197]. This perspective on
additivity of functors will be important for our later discussion because having an additive
functor F : B → A allows us to extend to a functor F : Ch≥0(B)→ Ch≥0(A) given by acting
pointwise on complexes:

(· · · → B2
∂2−→ B1

∂1−→ B0) 7−→ (· · · → F (B2)
F (∂2)−−−→ F (B1)

F (∂1)−−−→ F (B0))

Additionally, with this characterization of additivity, F sends chain homotopies to chain
homotopies since the chain homotopy condition in Definition 2.4 is defined in terms of sums
and composites of maps, which F preserves.1

In the case of functions f : A→ B of abelian groups, if f(0) = 0, f being additive, or in other
words a group homomorphism, is equivalent to the condition

f(x+ y)− f(x)− f(y) = 0, ∀x, y ∈ A

Historically, the term on the left is called the second cross-effect of f , and is denoted
by cr2(f). Similarly, there are higher cross-effects which measure the failure of f to be
polynomial of a specific degree. Eilenberg and MacLane generalized this definition to that

1 See also the discussion in [Wei94, p. 391].
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of functors between abelian categories in 1954 in order to measure the defect of a functor
from being polynomial-like [EM54]. For our current work we will utilize the definition given
in [JM04].

Definition 3.1 [JM04, Defn. 1.1] Given a functor F : B → A, for n ≥ 1 we define its
nth cross-effect, crn(F ) : Bn → A, inductively using the following implicit formulas:

cr1(F )(X)⊕ F (0) ∼= F (X), ∀X ∈ Ob(B)

and if crn−1(F ) for n− 1 ≥ 1 is defined, then crn(F ) is defined implicitly by

crn(F )(X1, ..., Xn)⊕ crn−1(F )(X1, X3, ..., Xn)⊕ crn−1(F )(X2, X3, ..., Xn)
∼= crn−1(F )(X1 ∨X2, X3, ..., Xn), ∀Xi ∈ Ob(B), 1 ≤ i ≤ n

An explicit construction of crn can be performed inductively by defining it to be a kernel of the
projection of crn−1(F )(X1 ∨ X2, X3, ..., Xn) onto the direct sum of crn−1(F )(X1, X3, ..., Xn)
with crn−1(F )(X2, X3, ..., Xn). In this perspective the action of crn(F ) on arrows is given by
restricting maps to maps between kernels. With this data crn becomes a functor between
functor categories

crn : Fun(B,A)→ Fun∗(Bn,A)

where Fun∗(Bn,A) denotes the category of n-variable functors that send any n-tuple contain-
ing the base point to zero. Further, from our inductive definition, crn is in fact an additive
functor in its own right, which is to say crn(F ⊕ G) ∼= crn(F ) ⊕ crn(G) for F,G : B →
A [BJO+18, Prop. 2.10].

We can now use the cross-effect to define the degree of a functor in analogy with the degree of
polynomial functions. Since we will want to be able to work with weak notions of equivalence,
hereafter we will consider functors F : B → Ch≥0(A), where still A is either R-Mod or
Ch≥0(R-Mod). We are still able to consider all functors G : B → A by post-composing them
with the degree zero functor degA0 : A → Ch≥0(A), which can be vizualised as embedding G
in a chain with G at the 0th position and 0’s elsewhere.

A functor is said to be degree n if, as in the case of real functions, its n + 1st cross-effect is
zero, though as with our general philosophy we weaken the requirement of equality to that
of equivalence. In [BJO+18, Defn. 4.2] pointwise chain homotopy equivalences are used to
define when a functor is degree n, but in this work we instead use the notion of natural chain
homotopy equivalences.

Definition 3.2 A functor F : B → Ch≥0(A) is said to be of degree n if crn+1(F )
is naturally chain homotopy equivalent to the zero functor. In this case we say that
crn+1(F ) is contractible.

In Definition 3.2 natural chain homotopy equivalence is a combination of the mapping struc-
ture for functors, natural transformations, and the equivalence structure for chain complexes,
chain homotopy equivalences. Explicitly, a natural chain homotopy equivalence is exactly a
chain homotopy equivalence under the isomorphism of categories in Proposition 3.3. Note that
just as in a general category, an isomorphism of categories is a functor with an inverse. The
pointwise chain homotopy equivalences in [BJO+18], on the other hand, are strictly weaker
than natural chain homotopy equivalences as they do not require that the homotopy maps
from Definition 2.4 live in the category of functors and natural transformations.
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Proposition 3.3 We have an isomorphism of categories

Ch≥0(Fun(B,A)) ∼= Fun(B,Ch≥0(A)) (2)

given by a relabeling of terms.

Proof. We define a functor γ : Ch≥0(Fun(B,A))→ Fun(B,Ch≥0(A)) given on F• in
Ch≥0(Fun(B,A)) by setting γ(F•) to be the functor defined on B and f : B → B′ in B by

γ(F•)(B)n := Fn(B) and γ(F•)(f)n := Fn(f), ∀n ≥ 0

where the differentials of γ(F•)(B) are the natural transformation differentials ∂n : Fn ⇒ Fn−1

evaluated at B. Since the differentials ∂n are natural and each Fn is a functor, γ(F•) is a
functor. Next, for α• : F• → G• we define γ(α•) : γ(F•)⇒ γ(G•) to have components

(γ(α•)B)n := (αn)B, ∀B ∈ Ob(B), ∀n ≥ 0

For each B ∈ Ob(B), γ(α•)B defines a chain map γ(F•)(B) → γ(G•)(B) since α• is a chain
map of natural transformations, so all squares with differentials commute. Further, γ(α•) is
natural since if f : B → B′ is a map in B, then at each n ≥ 0

γ(G•)(f)n ◦ (γ(α•)B)n = Gn(f) ◦ (αn)B = (αn)B′ ◦ Fn(f) = (γ(α•)B′)n ◦ γ(F•)(f)n

using naturality of αn. Since this definition is in terms of the components of α• it is inherently
functorial as composition of natural transformations is defined componentwise.

Next we must witness an inverse functor ρ : Fun(B,Ch≥0(A)) → Ch≥0(Fun(B,A)). For F :
B → Ch≥0(A) we set ρ(F ) to have nth component functor (−)n◦F where (−)n : Ch≥0(A)→ A
is the functor sending a chain complex to its nth term. The differential ∂F

n : (−)n ◦ F ⇒
(−)n−1 ◦ F is given at B ∈ Ob(B) by the nth differential in F (B), ∂B

n : F (B)n → F (B)n−1.
Naturality of the differential equates to the commutivity of the square

F (B)n F (B)n−1

F (B′)n F (B′)n−1

F (f)n

∂n(B)

∂n(B′)

F (f)n−1

for any f : B → B′, which follows since F (f) is a chain map.

Finally, we must define ρ on maps. If α : F ⇒ G is a natural transformation between two
functors F,G : B → Ch≥0(A), we define ρ(α) by setting ρ(α)n, n ≥ 0, to be the natural
transformation with components (ρ(α)n)B := (αB)n for B ∈ Ob(B). For each n ≥ 0, ρ(α)n is
natural since for any f : B → B′ in B, we can compute

ρ(G)n(f) ◦ (ρ(α)n)B = G(f)n ◦ (αB)n = (αB′)n ◦ F (f)n = (ρ(α)n)B′ ◦ ρ(F )n(f)

using naturality of α. Additionally, ρ(α) is a map of chain complexes since for any n ≥ 0 and
any B ∈ Ob(B),

(∂G
n )B ◦ (ρ(α)n)B = ∂G(B)

n ◦ (αB)n = (αB)n−1 ◦ ∂F (B)
n = (ρ(α)n−1)B ◦ (∂F

n )B

using the fact that αB is a chain map for every B ∈ Ob(B).

Once again, since ρ(α) is defined in terms of the components of α, the assignment ρ is
inherently functorial. Further, γ and ρ are exactly inverse of each other as they correspond
to simply swapping the element and natural number indices. ■

9



3 UNIVERSAL POLYNOMIAL APPROXIMATIONS

This proof suggests that our choice of natural chain homotopy equivalences is the correct
notion for studying polynomial functors in terms of chain homotopy since it provides exactly
the chain homotopies internal to a chain complex category.

With the notion of degree n functors and natural chain homotopy equivalences now defined, we
can begin approximating a functor by a sequence of functors of increasing degree, in analogy
with the approximation of real functions by their Taylor polynomials. In order to perform
this approximation we require a definition of universal degree n functors which will act as
our Taylor polynomials. In [JM04, p. 769] universal degree n functors are defined in terms
of quasi-isomorphisms, which [BJO+18] expands to pointwise chain homotopy equivalences.
From our work in Proposition 3.3, we now generalize the definition in [JM04, p. 769] to
natural chain homotopy equivalences.

Definition 3.4 For a functor F : B → Ch≥0(A), a degree n functor G : B → Ch≥0(A)
together with a natural transformation α : F ⇒ G is said to be a universal degree n
approximation of F if for any other such pair (H,β), the following hold:
(i) there exists a transformation γ : G⇒ H such that γ ◦ α ≃ β, and
(ii) γ is unique up to natural chain homotopy equivalence.

3.2 Universality

Throughout the remainder of this paper we seek to construct an explicit model for the degree
n approximation to any functor F following the work in [BJO+18], and demonstrate how
it agrees with the definition given in [JM04]. This process will rely on defining operations
on functors, or more explicitly functors between functor categories. We have already seen
such a functor in the nth cross-effect which can be realized as a functor crn : Fun(B,A) →
Fun∗(Bn,A). We turn this functor into a functor with codomain Fun(B,A) by post-composing
with the diagonal functor

∆∗ : Fun∗(Bn,A)→ Fun(B,A), ∆∗(F )(X) := F (X, ...,X)

Note that as discussed previously for the cross-effects, ∆∗ is additive since evaluating a multi-
variable functor at the same object in all variables preserves the direct sum operation.

Together these functors define what is known as a comonad [Rie17, Defn. 5.1.6] on the
category of functors for each n ≥ 1 given by Cn := ∆∗crn.

Definition 3.5 A functor C : C → C is said to be a comonad on the category C if
there exist natural transformations called the co-multiplication, δ : C ⇒ C2, and co-
unit, ϵ : C ⇒ 1C , which satisfy certain equational identities mimicking an associative
law, Cδ ◦ δ = δC ◦ δ, as well as unital laws, Cϵ ◦ δ = 1C and 1C = ϵC ◦ δ.

In addition to these transformations and identities, since Cn is constructed in a special way as
a composition of the functors ∆∗ and crn, it also comes equipped with a natural transformation
called the unit, η : 1Fun∗(Bn,A) ⇒ crn∆

∗, which will be used in showing that the nth polynomial
approximation we construct is degree n.

Using this structure we can begin defining the nth polynomial approximation, as seen in [BJO+18].
First we provide a preliminary definition/lemma for comonads on categories of modules or
chains of modules, A.

10



3 UNIVERSAL POLYNOMIAL APPROXIMATIONS

Lemma 3.6 If (C, δ, ϵ) is a comonad onA, then we have a functor C•+1 : A → Ch≥0(A)
given on an object A ∈ Ob(A) by

· · · → C3(A)
ϵC2(A)−CϵC(A)+C2ϵA
−−−−−−−−−−−−−−→ C2(A)

ϵC(A)−CϵA−−−−−−−→ C(A) (3)

where in general the differentials are defined by alternating sums
∑n−1

i=0 (−1)iCiϵCn−i(A).

Proof. From [Wei94, Defn. 8.2.1] and [Wei94, Defn. 8.6.4], the functor C•+1 is exactly the
composite of two well-known functors in homological algebra, the unnormalized chain complex
functor and the simplicial object functor for the comonad C, and so itself is a functor. ■

Mixing the approach in [JM04] and [BJO+18] we can then define the complex C•
n(F ) for a

functor F : B → A as the mapping cone of the map of chain complexes, for B ∈ Ob(B),

· · · C3
n(F )(B) C2

n(F )(B) Cn(F )(B)

· · · 0 0 F (B)

ϵF (B)

Although slightly different in form, this definition produces the same result as in [BJO+18],
which is the chain complex C•+1

n (F ) augmented by ϵF : Cn(F )→ F . For n ≥ 0 this procedure
defines a functor C•

n : Fun(B,A)→ Fun(B,Ch≥0(A)). Defining this functor using the mapping
cone allows for a clearer comparison with the definition in [JM04]. Now, as in [BJO+18, Defn.
4.2] we can define the nth polynomial approximation as a functor on functor categories.

Definition 3.7 The nth polynomial approximation for functors from B to
Ch≥0(R-Mod) is defined as the composite functor

Pn := (Tot)∗ ◦ C•
n+1 : Fun(B,Ch≥0(R-Mod))→ Fun(B,Ch≥0(R-Mod)) (4)

Here (Tot)∗ is the functor defined by post-composition with the totalization functor, so
(Tot)∗(F ) = Tot ◦ F for F : B → Ch≥0(Ch≥0(R-Mod)).

Our next main tasks are to show agreement with [JM04] and show the universality of the con-
struction in the sense of Definition 3.4. In order to introduce the [JM04] definition we require
some preliminary definitions. First, instead of using the chain complex construction given in
Lemma 3.6, Johnson and McCarthy use the normalized chain complex construction.

Definition 3.8 [Wei94, Defn. 8.3.6] If (C, δ, ϵ) is a comonad on A, the normalized
chain complex functor N•+1

C : A → Ch≥0(A) is defined on A ∈ Ob(A) by

N•+1
C (A)n :=

n−1⋂
i=0

ker(CiϵCn−i(A)), ∀n ≥ 1

and
N•+1

C (A)0 := C(A)

where boundary maps are given by CnϵA for n ≥ 1.

11



3 UNIVERSAL POLYNOMIAL APPROXIMATIONS

From the construction of the normalized chain complex, Johnson and McCarthy define their
nth polynomial approximation for a functor F : B → Ch≥0(R-Mod) by first taking the map-
ping cone of the chain map

· · · ker(ϵC2
n(F )(B)) ∩ ker(CnϵCn(F )(B)) ker(ϵCn(F )(B)) Cn(F )(B)

· · · 0 0 F (B)

ϵF (B)

and then totalizing. In order to show that this construction is equivalent to the one in
Definition 3.7, we first prove a lemma on mapping cones and chain homotopies.

Lemma 3.9 Let f• : A• → B• be a chain map in Ch≥0(A). Then if g•, h• : D• → A•
are chain homotopic via sn : Dn → An+1, n ≥ 0, with g• ◦f• = h• ◦f• and fn ◦sn−1 = 0
for n ≥ 0, then the induced maps on the mapping cones are chain homotopic

Proof. Let k• = g• ◦ f• = h• ◦ f•. Then g• and h• induce chain maps cone(k•) → cone(f•)
given by the diagonal matrices diag(hn−1, 1Bn) and diag(gn−1, 1Bn), for n ≥ 0. These are
chain maps since(

∂A
n−1 0

(−1)n−1fn−1 ∂B
n

)(
hn−1 0
0 1Bn

)
=

(
∂A
n−1hn−1 0

(−1)n−1fn−1hn−1 ∂B
n

)
=

(
hn−1 0
0 1Bn

)(
∂C
n−1 0

(−1)n−1kn−1 ∂B
n

)
and(

∂A
n−1 0

(−1)n−1fn−1 ∂B
n

)(
gn−1 0
0 1Bn

)
=

(
∂A
n−1gn−1 0

(−1)n−1fn−1gn−1 ∂B
n

)
=

(
gn−1 0
0 1Bn

)(
∂C
n−1 0

(−1)n−1kn−1 ∂B
n

)
using the fact that hn−1 and gn−1 are chain maps and the definition of k•. Then the matrix(
sn−1 0
0 0

)
for n ≥ 0 defines our desired chain homotopy since

(
gn−1 0
0 1Bn

)
−

(
hn−1 0
0 1Bn

)
=

(
gn−1 − hn−1 0

0 0

)
=

(
∂A
n ◦ sn−1 + sn−2 ◦ ∂C

n−1 0
0 0

)
=

(
∂A
n 0

(−1)nfn ∂B
n+1

)(
sn−1 0
0 0

)
+

(
sn−2 0
0 0

)(
∂C
n−1 0

(−1)n−1kn−1 ∂B
n

)
where in the last equality we use the fact that fn ◦ sn−1 = 0 for n ≥ 0. ■

Since Tot preserves chain homotopies [Wei94, p. 147], Lemma 3.9 allows us to prove the
equivalence of the constructions in [JM04] and [BJO+18] up to natural chain homotopy.

Proposition 3.10 For all n ≥ 0, the functors C•
n and N•

Cn
are naturally chain homo-

topy equivalent.

Proof. A well-known result in simplicial homotopy theory says that the construction C•+1
n

and the construction N•+1
Cn

are naturally chain homotopy equivalent via the inclusion of N•+1
Cn

into C•+1
n [GJ09, Thm 2.5]. Therefore, in order to show that our definition, C•

n, coincides
with the definition in [JM04], N•

Cn
, up to natural chain homotopy equivalence, we need only

show that the mapping cone construction preserves our chain homotopies. Since the vertical
maps for the mapping cone are all zeros except in the zeroth degree, in which they agree,
and the homotopy in [GJ09, Thm 2.5] is given by the identity in degree 0, Lemma 3.9 can be
applied as its hypotheses will hold for both homotopies in the equivalence. ■
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3 UNIVERSAL POLYNOMIAL APPROXIMATIONS

Now that we know our construction coincides with that in [JM04] and [BJO+18] up to natural
chain homotopy, it remains to show that it gives universal degree n approximations, as defined
in Definition 3.4. Towards proving this claim we first need maps pn,F : F ⇒ Pn(F ) for
F : B → Ch≥0(R-Mod) which are natural in F . This is done using the following map of chain
complexes.

· · · 0 0 0 F

· · · C3
n+1(F ) C2

n+1(F ) Cn+1(F ) F

1F

ϵFϵ
C2
n+1(F )

−Cn+1ϵCn+1(F )+C2
n+1ϵF ϵCn+1(F )−Cn+1ϵF

The map of complexes as defined is natural as all components are either zeros or identities. Ad-
ditionally, the resulting pn,F is obtained from this natural transformation by whiskering with
the totalization functor, and so is also natural. With this map in hand the universality claim
is the content of the following theorem which generalizes Proposition 4.5 in [BJO+18].

Theorem 3.11 For F : B → Ch≥0(R-Mod),
(i) The functor Pn(F ) : B → Ch≥0(R-Mod) is degree n.
(ii) If F is degree n, then the map pn,F : F ⇒ Pn(F ) is a natural chain homotopy

equivalence.
(iii) The pair (Pn(F ), pn,F : F ⇒ Pn(F )) is universal up to natural chain homotopy

equivalence with respect to degree n functors with maps from F .

Proof. Throughout let R = crn+1 and let L = ∆∗, so Cn+1 = LR. Additionally, let F : B →
Ch≥0(R-Mod) be a functor. We proceed with the proof in parts.

(i) To show that Pn(F ) is degree n we must show that the composite R ◦ (Tot)∗ ◦ C•
n+1 is

contractible. However, since R is additive and Tot is defined in terms of direct sums, we
have a natural isomorphism

R ◦ (Tot)∗ ◦ C•
n+1(F ) ∼= (Tot)∗ ◦R ◦ C•

n+1(F )

Additionally, as Tot preserves chain homotopies [Wei94, p. 147] it is sufficient to show that
R ◦ C•

n+1(F ) is contractible. However, as shown generally for a comonad in Lemma 2.9
of [BJO+18], R ◦ C•

n+1 has a natural chain homotopy between the identity and 0 maps,

sk : RCk
n+1 ⇒ RCk+1

n+1, given by ηRCk
n+1

, so R ◦ C•
n+1 is contractible and Pn(F ) is degree n.

(ii) Suppose F : B → Ch≥0(R-Mod) is of degree n, so that R(F ), and hence Cn+1(F ) = LR(F ) is
naturally chain homotopy equivalent to the zero functor. Since Cn+1 is additive it preserves
chain homotopies, so Ck

n+1(F ) is chain contractible for all k ≥ 1. Then C•
n+1(F ) is a

bicomplex where every row except the zeroth row is contractible. As is shown in Corollary
A.7 of [BJO+18], such a bicomplex contracts to its zeroth row after totalization. But, since
pn,F : F ⇒ Pn(F ) was exactly defined to be the inclusion of the zeroth row of the bicomplex
for Pn(F ) followed by a totalization, this result implies that pn,F : F ⇒ Pn(F ) is a chain
homotopy equivalence, as desired.

(iii) To prove the final claim we fix a degree n functor G : B → Ch≥0(R-Mod). Next, let
τ : F ⇒ G be a natural transformation. Then by naturality of pn we have the following

13



3 UNIVERSAL POLYNOMIAL APPROXIMATIONS

commuting square, where in diagrams we will denote natural transformations by →

F G

Pn(F ) Pn(G)

τ

pn,Gpn,F

Pn(τ)

Let sn,G : Pn(G) ⇒ G be the natural homotopy inverse of pn,G which exists by property
(ii) and the definition of chain homotopy equivalence. Setting τ# = sn,G ◦ Pn(τ) we obtain

τ# ◦ pn,F = sn,G ◦ Pn(τ) ◦ pn,F = sn,G ◦ pn,G ◦ τ ≃ τ

since sn,G◦pn,G ≃ 1G, so τ factors through pn,F up to a natural chain homotopy equivalence.

To show uniqueness for the universal property we can show that any σ : Pn(F ) ⇒ G such
that σ ◦ pn,F ≃ τ can be written, up to natural chain homotopy equivalence, in terms of τ
and maps associated with F and G. Using naturality we have a commuting rectangle

F Pn(F ) G

Pn(F ) Pn(Pn(F )) Pn(G)

pn,F

Pn(pn,F )

pn,F

pn,Pn(F )

σ

Pn(σ)

pn,Gsn,Pn(F )
sn,G (5)

where from part (ii) the maps pn,Pn(F ) and pn,G are natural chain homotopy equivalences.
Further, from [BJO+18, Prop. 4.5] there exists a natural isomorphism α : P 2

n ⇒ P 2
n such

that α ◦ Pn(pn,F ) = pn,Pn(F ). This equality implies that Pn(pn,F ) is also a natural chain
homotopy equivalence since we can write

Pn(pn,F )sn,Pn(F )α = α−1αPn(pn,F )sn,Pn(F )α = α−1pn,Pn(F )sn,Pn(F )α ≃ α−1α = 1P 2
n(F ) (6)

We can now write σ in terms of just τ , α, and maps associated with F and G:

σ ≃ sn,Gpn,Gσ

= sn,GPn(σ)pn,Pn(F ) (by commutivity of the square in Eq. (5))

≃ sn,GPn(σ)Pn(pn,F )sn,Pn(F )αpn,Pn(F ) (by Eq. (6))

= sn,GPn(σpn,F )sn,Pn(F )αpn,Pn(F )

≃ sn,GPn(τ)sn,Pn(F )αpn,Pn(F )

where in the last natural chain homotopy equivalence we use the fact that σ ◦ pn,F ≃ τ and
Pn preserves chain homotopies as Cn+1 and Tot do. Since this representation only depended
on σ ◦ pn,F ≃ τ , we must have σ ≃ τ#, proving uniqueness. ■

The universality in Theorem 3.11 is stronger than that given in [BJO+18] or [JM04] since
in [BJO+18] the homotopies are not assumed to be natural, while in [JM04] quasi-isomorphisms
are used. Since every homotopy equivalence is a quasi-isomorphism, this means that Theo-
rem 3.11 is strictly stronger than Lemma 2.11 in [JM04].

3.3 Examples

In this final section we provide two examples of the first polynomial approximation of a
functor. The first functor we consider is the identity functor 1R-Mod : R-Mod → R-Mod,
which we view as a functor into chain complexes via the degree zero inclusion degR-Mod

0 :
R-Mod→ Ch≥0(R-Mod).
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4 CONCLUSION

Example 3.1 (Degree 0) :

Note that the chain complex degR-Mod
0 (0) is the zero complex. This implies that

cr1(deg
R-Mod
0 ) ∼= degR-Mod

0 . Then, by our inductive formula for A,B ∈ Ob(R-Mod),

cr2(deg
R-Mod
0 )(A,B)⊕ degR-Mod

0 (A)⊕ degR-Mod
0 (B) ∼= degR-Mod

0 (A⊕B)

so cr2(deg
R-Mod
0 )(A,B) ∼= 0 since degR-Mod

0 (A ⊕ B) = degR-Mod
0 (A) ⊕ degR-Mod

0 (B). It
follows that P1(deg

R-Mod
0 )n ∼= 0 for each n ≥ 1, and P1(deg

R-Mod
0 )0 = 1R-Mod, so

P1(deg
R-Mod
0 )(A) := · · · → 0→ 0→ A = degR-Mod

0 (A)

This aligns with our expectations since degR-Mod
0 should itself be a “degree 0” polyno-

mial functor, so all of its approximations should equal it, possibly up to homotopy.

Next we can consider a more non-trivial example. If M ∈ Ob(R-Mod), then we have a module
M ⊗RM given by tensoring M by itself over R. This construction corresponds to the familiar
operation in linear algebra, where R-linear maps out of M ⊗R M are equivalent to R-bilinear
maps out of M ×M . Since ⊗ distributes over sums, this functor gives an interesting example
for our polynomial approximation [Alu09, p. 506].

Example 3.2 (Tensor power) :

First, observe that 0⊗R 0 ∼= 0, since bilinear maps out of 0× 0 are the same as linear
maps out of 0. Again this implies that cr1(−⊗R −) ∼= −⊗R −. On the other hand, if
M,N ∈ Ob(R-Mod), since tensors distribute over sums, our inductive formula says

cr2(−⊗R −)(M,N)⊕ (M ⊗R M)⊕ (N ⊗R N) ∼= (M ⊕N)⊗R (M ⊕N)
∼= (M ⊗R M)⊕ (M ⊗R N)⊕ (N ⊗R M)⊕ (N ⊗R N)

so cr2(− ⊗R −)(M,N) ∼= (M ⊗R N) ⊕ (N ⊗R M) is our “cross-term”, as in the name
of the cross-effect.
It follows that for k ≥ 1, Ck

2 (− ⊗R −)(M) = (M ⊗R M)⊕2k, since C2 is additive, and
we get a first polynomial approximation given by increasing sums of tensor powers:

P1(−⊗R −)(M) = · · · → (M ⊗R M)⊕4 → (M ⊗R M)⊕ (M ⊗R M)→M ⊗R M

4 Conclusion

In this thesis we constructed a formula for building polynomial approximations to invariants
valued in chain complexes, following an approach analogous to that of Taylor series in calculus.
Throughout the construction we introduced a number of important definitions and results
from the theory of homological algebra, including the mapping cone and totalization functor.
Using these tools we showed that our construction agreed with previous constructions found
in [JM04] and [BJO+18] up to our weak equivalence of interest, natural chain homotopy
equivalence. Further, we showed that our constructed polynomial functors satisfied a universal
property which extended those described in [JM04] and [BJO+18]. Finally, to illuminate our
construction we computed the first degree polynomial approximations of the identity and
tensor product functors, which also helped illustrate the notion of degree and the origin of
the cross-effect term in our work.

This thesis and the use of natural chain homotopy equivalences is part of a larger project which
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involves upgrading the work in [BJO+18] to connect the constructions to those used in the pre-
print [BBC23]. Future work to this effect involves demonstrating that the construction given
in this thesis preserves composition of invariants up to our desired notion of weak equivalence,
natural chain homotopy equivalence.
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[Goo90] Thomas G. Goodwillie, Calculus I: The first derivative of pseudoisotopy theory,
K-Theory 4 (1990), no. 1, 1 – 27.

[Goo92] , Calculus II: Analytic Functors, K-Theory 5 (1991/1992), no. 4, 295 – 332.

[Goo03] , Calculus III: Taylor Series, Geometry & Topology 7 (2003), no. 2, 645 –
711.

[Hat02] Allen Hatcher, Algebraic topology, Algebraic Topology, Cambridge University
Press, 2002.

[JM04] Brenda Johnson and Randy McCarthy, Deriving calculus with cotriples, Transac-
tions of the American Mathematical Society 356 (2004), no. 2, 757–803 (eng).

[Mac71] Saunders MacLane, Categories for the working mathematician, Springer-Verlag,
New York, 1971, Graduate Texts in Mathematics, Vol. 5.

[Rie17] Emily Riehl, Category theory in context, Aurora: Dover Modern Math Originals,
Dover Publications, 2017.

[Wei94] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in
Advanced Mathematics, Cambridge University Press, 1994.

[Wei99] Charles A. Weibel, Chapter 28 - history of homological algebra, History of Topology
(I.M. James, ed.), North-Holland, Amsterdam, 1999, pp. 797–836.

16

https://arxiv.org/abs/2101.07819

	Introduction
	Background Information
	Categorical Preliminaries for Invariants of Spaces
	Homotopies: From Spaces to Chain Complexes
	Mapping Cones

	Universal Polynomial Approximations
	Cross-Effects
	Universality
	Examples

	Conclusion

