Modeling Operator Algebras: The Formalization of Physical Theories

$E Ea T^1$

¹Faculty of Science University of Calgary

Math 617 Presentation

Physical Motivation/History - 5

- 5 Slides

- Formalization of Quantum Mechanics
- Generalization and abstraction

Introduction of C*-Algebras

- 3 Slides

- What is a C*-algebra?
- How do C^* -algebras communicate?
- How can we represent it concretely?

Physical Motivation/History - 5 Slide

- Formalization of Quantum Mechanics
- Generalization and abstraction

Introduction of $C^{\ast}\text{-}\mathsf{Algebras}$

- 3 Slides

- What is a C*-algebra?
- How do C*-algebras communicate?
- How can we represent it concretely?

æ

States - 5 Slides

- States: the abstraction of measurement
- Using states to construct concrete models

Summary - 1 Slide

- What does this tell us?
- What more can we say?

æ

States - 5 Slides

- States: the abstraction of measurement
- Using states to construct concrete models

Summary - 1 Slide

- What does this tell us?
- What more can we say?

æ

Physical Timeline

- mid-1920s: Schrödinger and Heisenberg separately construct probabilistic models of atomic phenomena
- 1930s: Stone, von Neumann, and Murray begin formalizing the theory using the budding field of operator algebras

Figure: Erwin Schrödinger and Werner Heisenberg.

メロト メロト メヨト メ

Origin of Operator Theory

Physical Timeline

- mid-1920s: Schrödinger and Heisenberg separately construct probabilistic models of atomic phenomena
- 1930s: Stone, von Neumann, and Murray begin formalizing the theory using the budding field of operator algebras

Figure: Marshall Stone and John von Neumann.

Figure: Joseph Murray

イロト イ団ト イヨト イヨ

5/2

How were Hilbert space operators used to formalize quantum theory?

- $\mathscr{H} =$ the state space of a physical system
- Self-adjoint $A \in \mathscr{B}(\mathscr{H}) = \text{observable quantities}$
- For $\mathcal{O} \in \mathscr{B}(\mathscr{H})$, and $\psi \in \mathscr{H}$, $\langle \mathcal{O}\psi, \psi \rangle =$ measurement of \mathcal{O} for the state ψ

How were Hilbert space operators used to formalize quantum theory?

- $\mathscr{H} =$ the state space of a physical system
- Self-adjoint $A \in \mathscr{B}(\mathscr{H}) = \text{observable quantities}$
- For $\mathcal{O} \in \mathscr{B}(\mathscr{H})$, and $\psi \in \mathscr{H}$, $\langle \mathcal{O}\psi, \psi \rangle =$ measurement of \mathcal{O} for the state ψ

How were Hilbert space operators used to formalize quantum theory?

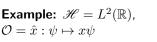
- $\bullet \ {\mathscr H} =$ the state space of a physical system
- Self-adjoint $A \in \mathscr{B}(\mathscr{H}) = \text{observable quantities}$
- For $\mathcal{O} \in \mathscr{B}(\mathscr{H})$, and $\psi \in \mathscr{H}$, $\langle \mathcal{O}\psi, \psi \rangle = \text{measurement of } \mathcal{O}$ for the state ψ

How were Hilbert space operators used to formalize quantum theory?

- $\bullet \ {\mathscr H} =$ the state space of a physical system
- Self-adjoint $A\in \mathscr{B}(\mathscr{H})=\text{observable quantities}$
- For $\mathcal{O} \in \mathscr{B}(\mathscr{H})$, and $\psi \in \mathscr{H}$, $\langle \mathcal{O}\psi, \psi \rangle$ = measurement of \mathcal{O} for the state ψ

How were Hilbert space operators used to formalize quantum theory?

- $\mathscr{H} =$ the state space of a physical system
- Self-adjoint $A\in \mathscr{B}(\mathscr{H})=\text{observable quantities}$
- For $\mathcal{O} \in \mathscr{B}(\mathscr{H})$, and $\psi \in \mathscr{H}$, $\langle \mathcal{O}\psi, \psi \rangle =$ measurement of \mathcal{O} for the state ψ



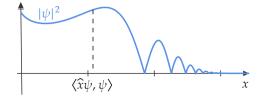


Figure: Probability distribution

イロト イロト イヨト イヨト

6 / 22

Origin of Operator Theory: Abstraction

Physical Timeline

- early-1940s: Gelfand and Naimark characterize what are now known as *C**-algebras
- late-1940s: Segal demonstrated the significance of C*-algebras to physical theory

Figure: Israel Gelfand

Figure: Mark Naimark

<ロト < 回 > < 回 > < 三 > < 三

7 / 22

Origin of Operator Theory: Abstraction

Physical Timeline

- early-1940s: Gelfand and Naimark characterize what are now known as C^* -algebras
- late-1940s: Segal demonstrated the significance of C*-algebras to physical theory

Figure: Irving Segal

イロト イ団ト イヨト イヨ

$Def^n: C^*-Algebra$

A C^* -algebra \mathfrak{A} is a Banach space over \mathbb{C} together with a multiplication $\cdot: \mathfrak{A} \times \mathfrak{A} \to \mathfrak{A}$ and an involution $^*: \mathfrak{A} \to \mathfrak{A}$ such that $\forall A, B \in \mathfrak{A}, \forall \alpha \in \mathbb{C}$: C1. $||A \cdot B|| \leq ||A|| ||B||$ C2. $A^{**} = A$ (involutive) C3. $(A \cdot B)^* = B^* \cdot A^*$ C4. $(\alpha A + B)^* = \overline{\alpha}A^* + B^*$ (conjugate-linearity) C5. $||A^* \cdot A|| = ||A||^2$ (C^* -condition)

イロト イボト イヨト イヨ

$Def^n: C^*-Algebra$

A C^* -algebra \mathfrak{A} is a Banach space over \mathbb{C} together with a multiplication $\cdot : \mathfrak{A} \times \mathfrak{A} \to \mathfrak{A}$ and an involution $^* : \mathfrak{A} \to \mathfrak{A}$ such that $\forall A, B \in \mathfrak{A}, \forall \alpha \in \mathbb{C}$: C1. $||A \cdot B|| \leq ||A|| ||B||$ C2. $A^{**} = A$ (involutive) C3. $(A \cdot B)^* = B^* \cdot A^*$ C4. $(\alpha A + B)^* = \overline{\alpha}A^* + B^*$ (conjugate-linearity) C5. $||A^* \cdot A|| = ||A||^2$ (C^* -condition)

Motivation for C5. If $A \in \mathscr{B}(\mathscr{H})$, for \mathscr{H} a Hilbert space,

$$||AA^*|| = ||A||^2$$

Question: How do we map between C^* -algebras?

크

Question: How do we map between C^* -algebras?

Defⁿ: C*-Algebra Homomorphism

A *-homomorphism of C^* algebras is a $\mathbb{C}\text{-linear}$ map $\varphi:\mathfrak{A}\to\mathfrak{B}$ such that for all $A,B\in\mathfrak{A},$

$$arphi(AB)=arphi(A)arphi(B)$$
 and $arphi(A^*)=arphi(A)^*$

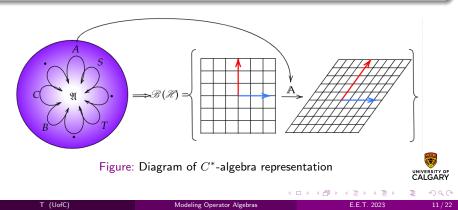
Representation of C^* -algebras

Defⁿ: Representation

A representation of a $C^*\text{-}{\rm algebra}\ {\mathfrak A}$ is a pair $(\varphi, {\mathscr H})$ for ${\mathscr H}$ a Hilbert space and

 $\varphi:\mathfrak{A}\to\mathscr{B}(\mathscr{H})$

a *-homomorphism.



Example: Sub-algebra

If $\mathscr{C}\leq\mathscr{B}(\mathscr{H})$ is a closed linear subspace space that is also algebraically closed under \cdot and *, then the inclusion

$$\iota_{\mathscr{C}}:\mathscr{C}\hookrightarrow\mathscr{B}(\mathscr{H})$$

is a representation.

Example: Sub-algebra

If $\mathscr{C} \leq \mathscr{B}(\mathscr{H})$ is a closed linear subspace space that is also algebraically closed under \cdot and *, then the inclusion

$$\iota_{\mathscr{C}}:\mathscr{C}\hookrightarrow\mathscr{B}(\mathscr{H})$$

is a representation.

Example: Multiplication Representation

If (X, Ω, μ) is a σ -finite measure space, $L^{\infty}(X, \Omega, \mu)$ with complex conjugation as the *-operation is a C^* -algebra. The map

$$M: L^\infty(X, \Omega, \mu) \to \mathscr{B}(L^2(X, \Omega, \mu)), \ M_g(f) = gf, \forall g \in L^\infty(X, \Omega, \mu)$$

is a *-representation of $L^{\infty}(X,\Omega,\mu)$

CALGARY

12/22

• A state corresponds to a family of measurements!

æ

< □ > < □ > < 臣

• A state corresponds to a family of measurements!

æ

• A state corresponds to a family of measurements!

Defⁿ: State

A state $\varphi\in \mathscr{B}(\mathfrak{A},\mathbb{C})$ is a bounded linear functional such that

$$||\varphi|| = 1$$
, and $\forall A \in \mathfrak{A}, \varphi(A^*A) \ge 0$

• A state corresponds to a family of measurements!

Defⁿ: State

A state $\varphi\in \mathscr{B}(\mathfrak{A},\mathbb{C})$ is a bounded linear functional such that

$$||\varphi|| = 1$$
, and $\forall A \in \mathfrak{A}, \varphi(A^*A) \ge 0$

Notation: We write $\mathscr{S}(\mathfrak{A})$ for the **state space** of \mathfrak{A}

If $\rho \in \mathscr{S}(\mathfrak{A})$ there exists a representation $\varphi_{\rho} : \mathfrak{A} \to \mathscr{H}_{\rho}$ and $\xi_{\rho} \in \mathscr{H}_{\rho}$ such that

 $\mathsf{cl}(\varphi_{\rho}(\mathfrak{A})\xi_{\rho})=\mathscr{H}_{\rho} \ \text{ and } \ \rho(A)=\langle \varphi_{\rho}(A)\xi_{\rho},\xi_{\rho}\rangle_{\mathscr{H}_{\rho}}, \ \forall A\in\mathfrak{A}$

If $\rho \in \mathscr{S}(\mathfrak{A})$ there exists a representation $\varphi_{\rho} : \mathfrak{A} \to \mathscr{H}_{\rho}$ and $\xi_{\rho} \in \mathscr{H}_{\rho}$ such that

$$\mathrm{cl}(\varphi_{
ho}(\mathfrak{A})\xi_{
ho}) = \mathscr{H}_{
ho} \ \ \mathrm{and} \ \
ho(A) = \langle \varphi_{
ho}(A)\xi_{
ho},\xi_{
ho}
angle_{\mathscr{H}_{
ho}}, \ \forall A \in \mathfrak{A}$$

Construction Sketch: ρ induces a semi-inner product u_{ρ} on \mathfrak{A} :

$$u_{\rho}(A,B) = \rho(B^*A), \; \forall A, B \in \mathfrak{A}$$

If $\rho\in\mathscr{S}(\mathfrak{A})$ there exists a representation $\varphi_{\rho}:\mathfrak{A}\to\mathscr{H}_{\rho}$ and $\xi_{\rho}\in\mathscr{H}_{\rho}$ such that

$$\mathrm{cl}(\varphi_{
ho}(\mathfrak{A})\xi_{
ho}) = \mathscr{H}_{
ho} \ \ \mathrm{and} \ \
ho(A) = \langle \varphi_{
ho}(A)\xi_{
ho},\xi_{
ho}
angle_{\mathscr{H}_{
ho}}, \ \forall A \in \mathfrak{A}$$

Construction Sketch: ρ induces a semi-inner product u_{ρ} on \mathfrak{A} :

$$u_{\rho}(A,B) = \rho(B^*A), \ \forall A,B \in \mathfrak{A}$$

• $\forall A,B,C \in \mathfrak{A}, \alpha \in \mathbb{C}, \ \rho(C^*(\alpha A + B)) = \alpha\rho(C^*A) + \rho(C^*B) \text{ and}$

$$\rho((\alpha A + B)^*C) = \overline{\alpha}\rho(A^*C) + \rho(B^*C)$$

If $\rho \in \mathscr{S}(\mathfrak{A})$ there exists a representation $\varphi_{\rho} : \mathfrak{A} \to \mathscr{H}_{\rho}$ and $\xi_{\rho} \in \mathscr{H}_{\rho}$ such that

$$\mathrm{cl}(arphi_
ho(\mathfrak{A})\xi_
ho)=\mathscr{H}_
ho$$
 and $ho(A)=\langlearphi_
ho(A)\xi_
ho,\xi_
ho
angle_{\mathscr{H}_
ho},\ orall A\in\mathfrak{A}$

Construction Sketch: ρ induces a semi-inner product u_{ρ} on \mathfrak{A} :

$$\begin{split} u_{\rho}(A,B) &= \rho(B^*A), \ \forall A,B \in \mathfrak{A} \\ \bullet \ \forall A,B,C \in \mathfrak{A}, \alpha \in \mathbb{C}, \ \rho(C^*(\alpha A + B)) &= \alpha \rho(C^*A) + \rho(C^*B) \ \text{and} \\ \rho((\alpha A + B)^*C) &= \overline{\alpha} \rho(A^*C) + \rho(B^*C) \end{split}$$

•
$$\forall A \in \mathfrak{A}, \ u_{\rho}(A, A) = \rho(A^*A) \ge 0$$

EET 2023

If $\rho \in \mathscr{S}(\mathfrak{A})$ there exists a representation $\varphi_{\rho} : \mathfrak{A} \to \mathscr{H}_{\rho}$ and $\xi_{\rho} \in \mathscr{H}_{\rho}$ such that $\operatorname{cl}(\varphi_{\rho}(\mathfrak{A})\xi_{\rho}) = \mathscr{H}_{\rho}$ and $\rho(A) = \langle \varphi_{\rho}(A)\xi_{\rho}, \xi_{\rho} \rangle_{\mathscr{H}_{\rho}}, \forall A \in \mathfrak{A}$

Construction Sketch: ρ induces a semi-inner product u_{ρ} on \mathfrak{A} :

$$\begin{split} u_{\rho}(A,B) &= \rho(B^*A), \ \forall A,B \in \mathfrak{A} \\ \bullet \ \forall A,B,C \in \mathfrak{A}, \alpha \in \mathbb{C}, \ \rho(C^*(\alpha A + B)) &= \alpha \rho(C^*A) + \rho(C^*B) \ \text{and} \\ \rho((\alpha A + B)^*C) &= \overline{\alpha}\rho(A^*C) + \rho(B^*C) \end{split}$$

•
$$\forall A \in \mathfrak{A}, u_{\rho}(A, A) = \rho(A^*A) \ge 0$$

• $\forall A, B \in \mathfrak{A}, \rho(B^*A) = \rho((A^*B)^*) = \overline{\rho(A^*B)}$

To obtain an inner product let $\mathfrak{K} := \{A \in \mathfrak{A} : u_{\rho}(A, A) = 0\}$, and set $\mathfrak{B} = \mathfrak{A}/\mathfrak{K}$:

æ

< □ > < □ > < 臣

To obtain an inner product let $\mathfrak{K} := \{A \in \mathfrak{A} : u_{\rho}(A, A) = 0\}$, and set $\mathfrak{B} = \mathfrak{A}/\mathfrak{K}$:

• If $A, B \in \mathfrak{K}$, $|u_{\rho}(A, B)| \leq u_{\rho}(A, A)u_{\rho}(B, B) = 0$ for all $c \in \mathbb{C}$ $u_{\rho}(A + cB, A + cB) = 0$, so $A + cB \in \mathfrak{K}$

Image: A matrix and a matrix

To obtain an inner product let $\mathfrak{K}:=\{A\in\mathfrak{A}: u_\rho(A,A)=0\}$, and set $\mathfrak{B}=\mathfrak{A}/\mathfrak{K}:$

• If $A, B \in \mathfrak{K}$, $|u_{\rho}(A, B)| \leq u_{\rho}(A, A)u_{\rho}(B, B) = 0$ for all $c \in \mathbb{C}$ $u_{\rho}(A + cB, A + cB) = 0$, so $A + cB \in \mathfrak{K}$ • If $A \in \mathfrak{K}, C \in \mathfrak{A}$,

$$\rho((CA)^*CA) = \rho((C^*CA)^*A) = u_\rho(A, C^*CA) = 0$$

so $CA \in \mathfrak{K}$

< □ > < 同 > < 三

To obtain an inner product let $\mathfrak{K} := \{A \in \mathfrak{A} : u_{\rho}(A, A) = 0\}$, and set $\mathfrak{B} = \mathfrak{A}/\mathfrak{K}$:

• If $A, B \in \mathfrak{K}$, $|u_{\rho}(A, B)| \leq u_{\rho}(A, A)u_{\rho}(B, B) = 0$ for all $c \in \mathbb{C}$ $u_{\rho}(A + cB, A + cB) = 0$, so $A + cB \in \mathfrak{K}$ • If $A \in \mathfrak{K}, C \in \mathfrak{A}$,

$$\rho((CA)^*CA)=\rho((C^*CA)^*A)=u_\rho(A,C^*CA)=0$$

so $CA \in \mathfrak{K}$ Set $\mathscr{H}_{\rho} := \widehat{\mathfrak{B}}$, the Hilbert space completion of \mathfrak{B} .

Image: A matrix and a matrix

Construction: Action

Let $I \in \mathfrak{A}$ be the unit, and set $\xi_{\rho} := (I + \mathfrak{K})_{n \in \mathbb{N}}$.

크

	lof	

Construction: Action

Let $I \in \mathfrak{A}$ be the unit, and set $\xi_{\rho} := (I + \mathfrak{K})_{n \in \mathbb{N}}$.

• For $A \in \mathfrak{A}$, $(B_n + \mathfrak{K})_{n \in \mathbb{N}} \in \mathscr{H}_{\rho}$, define

 $\varphi_{\rho}(A)(B_n + \mathfrak{K})_{n \in \mathbb{N}} := (AB_n + \mathfrak{K})_{n \in \mathbb{N}}$

< □ > < □ > < 臣

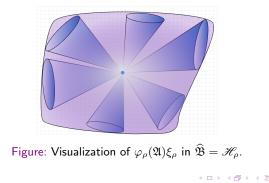
Construction: Action

Let $I \in \mathfrak{A}$ be the unit, and set $\xi_{\rho} := (I + \mathfrak{K})_{n \in \mathbb{N}}$.

• For $A \in \mathfrak{A}$, $(B_n + \mathfrak{K})_{n \in \mathbb{N}} \in \mathscr{H}_{\rho}$, define

$$\varphi_{\rho}(A)(B_n + \mathfrak{K})_{n \in \mathbb{N}} := (AB_n + \mathfrak{K})_{n \in \mathbb{N}}$$

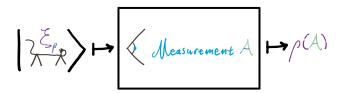
• $\varphi_{\rho}(\mathfrak{A})\xi_{\rho} = \mathfrak{A}/\mathfrak{K}$ embedded into $\widehat{\mathfrak{B}}$, which is dense.



Construction: Measurement

A measurement in \mathscr{H}_{ρ} is an evaluation of ρ :

$$\begin{split} \langle \varphi_{\rho}(A)\xi_{\rho},\xi_{\rho}\rangle_{\mathscr{H}_{\rho}} &= \langle (A+\mathfrak{K})_{n\in\mathbb{N}}, (I+\mathfrak{K})_{n\in\mathbb{N}}\rangle_{\mathscr{H}_{\rho}} \\ &:= \lim_{n\to\infty} \langle A+\mathfrak{K}, I+\mathfrak{K}\rangle_{\mathfrak{B}} \\ &= \lim_{n\to\infty} \rho(A) = \rho(A) \end{split}$$



- Quantum mechanics can be modeled by algebras of operators
- Operator algebras separate general observables and particular physical systems
- Abstract algebras of operators can be represented as bounded operators on a Hilbert space

18 / 22

- Quantum mechanics can be modeled by algebras of operators
- Operator algebras separate general observables and particular physical systems
- Abstract algebras of operators can be represented as bounded operators on a Hilbert space

18 / 22

- Quantum mechanics can be modeled by algebras of operators
- Operator algebras separate general observables and particular physical systems
- Abstract algebras of operators can be represented as bounded operators on a Hilbert space

< □ > < 同 > < 三

18/22

- Quantum mechanics can be modeled by algebras of operators
- Operator algebras separate general observables and particular physical systems
- Abstract algebras of operators can be represented as bounded operators on a Hilbert space

 $\mathfrak{A} \cap \mathscr{H}$

Concluding Question: Can we model an algebra of operators faithfully, and if so how would we go about it?

18/22

Thank you for your time!

Any questions?

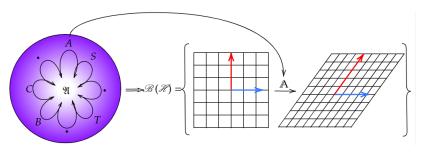


Figure: Diagram of $C^{\ast}\mbox{-algebra}$ representation

References I

- W. Arveson. An Invitation to C*-Algebras. Graduate Texts in Mathematics. Springer New York, 1998. ISBN: 9780387901763.
- [2] J. Baez. What are C*-algebras good for? 2000. URL: https://math.ucr.edu/home/baez/cstar.html.
- [3] O. Bratteli and D. Robinson. Operator Algebras and Quantum Statistical Mechanics 1: C*- and W*-Algebras. Symmetry Groups. Decomposition of States. Operator Algebras and Quantum Statistical Mechanics. Springer. ISBN: 9783540170938.
- [4] K. R. Davidson. C*-Algebras by Example. Fields Institute for Research in Mathematical Sciences Toronto: Fields Institute monographs. American Mathematical Society, 1996. ISBN: 9780821805992.
- [5] Freepik. atom icons. Flaticon. (Accessed March 18, 2023). URL: https://www.flaticon.com/free-icons/atom.
- [6] Freepik. document icons. Flaticon. (Accessed March 18, 2023). URL: https://www.flaticon.com/free-icons/document.

イロト イロト イヨト イヨト

20 / 22

References II

- [7] Freepik. transition icons. Flaticon. (Accessed March 18, 2023). URL: https://www.flaticon.com/free-icons/transition.
- [8] R. Kadison and J. Ringrose. Fundamentals of the Theory of Operator Algebras. Volume I. Fundamentals of the Theory of Operator Algebras. American Mathematical Society, 1997. ISBN: 9780821808191.
- [9] R. Kadison and J. Ringrose. Fundamentals of the Theory of Operator Algebras. Volume II. Fundamentals of the Theory of Operator Algebras. American Mathematical Society, 1997. ISBN: 9780821808207.
- G. Murphy. C*-Algebras and Operator Theory. Elsevier Science, 2014. ISBN: [10]9780080924960
- [11] orvipixel. algebra icons. Flaticon. (Accessed March 18, 2023). URL: https://www.flaticon.com/free-icons/algebra.
- A. J. Parzygnat. "From Observables and States to Hilbert Space and Back: [12] A 2-Categorical Adjunction". In: Applied Categorical Structures 26.6 (2018), pp. 1123–1157. DOI: 10.1007/s10485-018-9522-6. URL: https://doi.org/10.1007\%2Fs10485-018-9522-6.

< ロ > < 回 > < 回 > < 回 > < 回 >

- [13] K. Strung and F. Perera. An Introduction to C*-Algebras and the Classification Program. Advanced Courses in Mathematics - CRM Barcelona. Springer International Publishing, 2020. ISBN: 9783030474645.
- [14] V. Szirka. quantum icons. Flaticon. (Accessed March 18, 2023). URL: https://www.flaticon.com/free-icons/quantum.

