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Origin of Operator Theory

Physical Timeline

mid-1920s: Schrödinger and
Heisenberg separately construct
probabilistic models of atomic
phenomena

1930s: Stone, von Neumann, and
Murray begin formalizing the theory
using the budding field of operator
algebras

Figure: Erwin Schrödinger and Werner
Heisenberg.
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Origin of Operator Theory

Physical Timeline

mid-1920s: Schrödinger and
Heisenberg separately construct
probabilistic models of atomic
phenomena

1930s: Stone, von Neumann, and
Murray begin formalizing the theory
using the budding field of operator
algebras

Figure: Marshall Stone and John von
Neumann.

Figure: Joseph Murray
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Bounded Hilbert Space Operators

Question
How were Hilbert space operators used to formalize quantum theory?

H = the state space of a physical system

Self-adjoint A ∈ B(H ) = observable quantities

For O ∈ B(H ), and ψ ∈ H , ⟨Oψ,ψ⟩ = measurement of O for the state ψ

Example: H = L2(R),
O = x̂ : ψ 7→ xψ

Figure: Probability distribution
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Origin of Operator Theory: Abstraction

Physical Timeline

early-1940s: Gelfand and Naimark
characterize what are now known as
C∗-algebras

late-1940s: Segal demonstrated the
significance of C∗-algebras to
physical theory

Figure: Israel Gelfand

Figure: Mark Naimark
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Origin of Operator Theory: Abstraction

Physical Timeline

early-1940s: Gelfand and Naimark
characterize what are now known as
C∗-algebras

late-1940s: Segal demonstrated the
significance of C∗-algebras to
physical theory

Figure: Irving Segal
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What is a C∗-algebra?

Defn: C∗-Algebra

A C∗-algebra A is a Banach space over C together with a multiplication
· : A× A → A and an involution ∗ : A → A such that ∀A,B ∈ A, ∀α ∈ C:
C1. ||A ·B|| ≤ ||A|| ||B||
C2. A∗∗ = A (involutive)

C3. (A ·B)∗ = B∗ ·A∗

C4. (αA+B)∗ = αA∗ +B∗ (conjugate-linearity)

C5. ||A∗ ·A|| = ||A||2 (C∗-condition)

Motivation for C5. If A ∈ B(H ), for H a Hilbert space,

||AA∗|| = ||A||2
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Morphisms of C∗-algebras

Question: How do we map between C∗-algebras?

Defn: C∗-Algebra Homomorphism

A ∗-homomorphism of C∗ algebras is a C-linear map φ : A → B such that for
all A,B ∈ A,

φ(AB) = φ(A)φ(B) and φ(A∗) = φ(A)∗
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Representation of C∗-algebras

Defn: Representation

A representation of a C∗-algebra A is a pair (φ,H ) for H a Hilbert space and

φ : A → B(H )

a ∗-homomorphism.

Figure: Diagram of C∗-algebra representation

T (UofC) Modeling Operator Algebras E.E.T. 2023 11 / 22



Examples of Representations

Example: Sub-algebra

If C ≤ B(H ) is a closed linear subspace space that is also algebraically closed
under · and ∗, then the inclusion

ιC : C ↪→ B(H )

is a representation.

Example: Multiplication Representation

If (X,Ω, µ) is a σ-finite measure space, L∞(X,Ω, µ) with complex conjugation as
the ∗-operation is a C∗-algebra. The map

M : L∞(X,Ω, µ) → B(L2(X,Ω, µ)), Mg(f) = gf,∀g ∈ L∞(X,Ω, µ)

is a ∗-representation of L∞(X,Ω, µ)
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States of a C∗-algebra

Question: How do we abstract the notion of a state?

A state corresponds to a family of measurements!

Defn: State

A state φ ∈ B(A,C) is a bounded linear functional such that

||φ|| = 1, and ∀A ∈ A, φ(A∗A) ≥ 0

Notation: We write S (A) for the state space of A

T (UofC) Modeling Operator Algebras E.E.T. 2023 13 / 22



States of a C∗-algebra

Question: How do we abstract the notion of a state?

A state corresponds to a family of measurements!

Defn: State

A state φ ∈ B(A,C) is a bounded linear functional such that

||φ|| = 1, and ∀A ∈ A, φ(A∗A) ≥ 0

Notation: We write S (A) for the state space of A

T (UofC) Modeling Operator Algebras E.E.T. 2023 13 / 22



States of a C∗-algebra

Question: How do we abstract the notion of a state?

A state corresponds to a family of measurements!

Defn: State

A state φ ∈ B(A,C) is a bounded linear functional such that

||φ|| = 1, and ∀A ∈ A, φ(A∗A) ≥ 0

Notation: We write S (A) for the state space of A

T (UofC) Modeling Operator Algebras E.E.T. 2023 13 / 22



States of a C∗-algebra

Question: How do we abstract the notion of a state?

A state corresponds to a family of measurements!

Defn: State

A state φ ∈ B(A,C) is a bounded linear functional such that

||φ|| = 1, and ∀A ∈ A, φ(A∗A) ≥ 0

Notation: We write S (A) for the state space of A

T (UofC) Modeling Operator Algebras E.E.T. 2023 13 / 22



Concrete Model for a State: Construction

Thm: Representability of States

If ρ ∈ S (A) there exists a representation φρ : A → Hρ and ξρ ∈ Hρ such that

cl(φρ(A)ξρ) = Hρ and ρ(A) = ⟨φρ(A)ξρ, ξρ⟩Hρ
, ∀A ∈ A

Construction Sketch: ρ induces a semi-inner product uρ on A:

uρ(A,B) = ρ(B∗A), ∀A,B ∈ A

∀A,B,C ∈ A, α ∈ C, ρ(C∗(αA+B)) = αρ(C∗A) + ρ(C∗B) and

ρ((αA+B)∗C) = αρ(A∗C) + ρ(B∗C)

∀A ∈ A, uρ(A,A) = ρ(A∗A) ≥ 0

∀A,B ∈ A, ρ(B∗A) = ρ((A∗B)∗) = ρ(A∗B)
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Construction: State Space

To obtain an inner product let K := {A ∈ A : uρ(A,A) = 0}, and set B = A/K:

If A,B ∈ K,
|uρ(A,B)| ≤ uρ(A,A)uρ(B,B) = 0

for all c ∈ C uρ(A+ cB,A+ cB) = 0, so A+ cB ∈ K

If A ∈ K, C ∈ A,

ρ((CA)∗CA) = ρ((C∗CA)∗A) = uρ(A,C
∗CA) = 0

so CA ∈ K

Set Hρ := B̂, the Hilbert space completion of B.
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Construction: Action

Let I ∈ A be the unit, and set ξρ := (I + K)n∈N.

For A ∈ A, (Bn + K)n∈N ∈ Hρ, define

φρ(A)(Bn + K)n∈N := (ABn + K)n∈N

φρ(A)ξρ = A/K embedded into B̂, which is dense.

Figure: Visualization of φρ(A)ξρ in B̂ = Hρ.

T (UofC) Modeling Operator Algebras E.E.T. 2023 16 / 22



Construction: Action

Let I ∈ A be the unit, and set ξρ := (I + K)n∈N.

For A ∈ A, (Bn + K)n∈N ∈ Hρ, define

φρ(A)(Bn + K)n∈N := (ABn + K)n∈N

φρ(A)ξρ = A/K embedded into B̂, which is dense.

Figure: Visualization of φρ(A)ξρ in B̂ = Hρ.

T (UofC) Modeling Operator Algebras E.E.T. 2023 16 / 22



Construction: Action

Let I ∈ A be the unit, and set ξρ := (I + K)n∈N.

For A ∈ A, (Bn + K)n∈N ∈ Hρ, define

φρ(A)(Bn + K)n∈N := (ABn + K)n∈N

φρ(A)ξρ = A/K embedded into B̂, which is dense.

Figure: Visualization of φρ(A)ξρ in B̂ = Hρ.

T (UofC) Modeling Operator Algebras E.E.T. 2023 16 / 22



Construction: Measurement

A measurement in Hρ is an evaluation of ρ:

⟨φρ(A)ξρ, ξρ⟩Hρ = ⟨(A+ K)n∈N, (I + K)n∈N⟩Hρ

:= lim
n→∞

⟨A+ K, I + K⟩B

= lim
n→∞

ρ(A) = ρ(A)
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Conclusions

Summary:

Quantum mechanics can be modeled by
algebras of operators

Operator algebras separate general
observables and particular physical systems

Abstract algebras of operators can be
represented as bounded operators on a
Hilbert space

A ↷ H

Concluding Question: Can we model an algebra of operators faithfully, and if so
how would we go about it?
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Questions?

Thank you for your time!

Any questions?

Figure: Diagram of C∗-algebra representation
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