Let \mathcal{B} be an ∞ -topos.

Proof: Definition (\mathcal{B} -Category and \mathcal{B} -functors)

A \mathcal{B} -category \mathcal{C} is a limit preserving functor $\mathcal{B}^{\mathrm{op}} \overset{\mathcal{C}}{\to} \mathrm{Cat}_{\infty}$. Write $\mathrm{Cat}(\mathcal{B}) = \mathrm{Fun}^{\mathrm{R}}(\mathcal{B}^{\mathrm{op}}, \mathrm{Cat}_{\infty})$ for the (large) category of \mathcal{B} categories. A \mathcal{B} -functor is a natural transformation of \mathcal{B} -categories, and we will write $\operatorname{Fun}_{\mathcal{B}}(\mathcal{C},\mathcal{D}):=\operatorname{Nat}(\mathcal{C},\mathcal{D})$ for the category of \mathcal{B} -functors.

√ Important

 $\text{Regular (higher) category theory has } \mathcal{B} = Spc = PShv(*) \text{ since } Fun^R(PShv(*)^{op}, Cat_{\infty}) \simeq Fun(*^{op}, Cat_{\infty}) = Cat_{\infty} \,.$ More generally, PShv(T)-categories are just Cat_{∞} -valued presheaves on T.

Definition (Underlying Category)

Given a $\mathcal B$ -category $\mathcal C$, we will call the category, $\Gamma \mathcal C:=\mathcal C(1)$, given by evaluating on the terminal object $1\in \mathcal B$ the underlying category of C.

\blacksquare Example (\mathcal{B} -groupoid)

We have the Yoneda embedding $h_{(-)}: \mathcal{B} \to \mathrm{Fun}^{\mathrm{L}}(\mathcal{B}^{\mathrm{op}}, \mathrm{Spc}) \to \mathrm{Fun}^{\mathrm{L}}(\mathcal{B}^{\mathrm{op}}, \mathrm{Cat}_{\infty})$ giving for each $B \in \mathcal{B}$ a \mathcal{B} -category $B = \hom_{\mathcal{B}}(-, B)$. Such \mathcal{B} -categories are called \mathcal{B} -groupoids.

\blacksquare Example (\mathcal{B} -groupoids)

The functor $\operatorname{ev}_0:\mathcal{B}^{\Delta^1}\to\mathcal{B}$ is a cartesian fibration and hence classifies a limit-preserving functor

$$\Omega_{\mathcal{B}}: \mathcal{B}^{\mathrm{op}} o \mathrm{Cat}_{\infty}, \ \ B \mapsto \mathcal{B}_{/B}, \ \ f \mapsto f^*$$

which is a \mathcal{B} -category called the \mathcal{B} -category of \mathcal{B} -groupoids.

\blacksquare Example (Functor \mathcal{B} -category)

The ∞ -category $\mathrm{Cat}(\mathcal{B})$ is cartesian closed and thus has an internal hom $\mathrm{Fun}_{\mathcal{B}}(\mathcal{C},\mathcal{D})$ (we will supress the \mathcal{B} in the subscript when \mathcal{B} is clear from context) which satisfies $\Gamma \operatorname{Fun}(\mathcal{C}, \mathcal{D}) = \operatorname{Fun}_{\mathcal{B}}(\mathcal{C}, \mathcal{D})$.

Analogies with Normal Category Theory

For each $B \in \mathcal{B}$, evaluation at $\mathrm{id}_B \in \underline{B}(B)$ defines a natural equivalence

$$\operatorname{Fun}_{\mathcal{B}}(\underline{B},\mathcal{C})\stackrel{\sim}{\longrightarrow} \mathcal{C}(B).$$

As a consequence there are natural equivalences

$$\underline{\operatorname{Fun}}_{\mathcal{B}}(\underline{B},\mathcal{C}) \simeq \mathcal{C}(B \times (-))$$

and

$$\underline{\operatorname{Fun}}_{\mathcal{B}}(\mathcal{C},\mathcal{D}) \simeq \operatorname{Fun}_{\mathcal{B}}(\mathcal{C} \times \underline{B},\mathcal{D}) \simeq \operatorname{Fun}_{\mathcal{B}}(\mathcal{C},\underline{\operatorname{Fun}}_{\mathcal{B}}(\underline{B},\mathcal{D})).$$

Let $\mathcal Q$ be a class of morphisms in $\mathcal B$ closed under base change. A $\mathcal B$ -category $\mathcal C$ is $\mathcal Q$ -complete if it satisfies the following conditions:

- for every f:A o B in $\mathcal Q$, the functor $f^*:\mathcal C(B) o \mathcal C(A)$ admits a left adjoint $f_!:\mathcal C(A) o \mathcal C(B)$
- For every pullback square,

$$A' \xrightarrow{\alpha} A$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$B' \xrightarrow{\beta} B$$

in $\mathcal B$ with f in $\mathcal Q$, the Beck-Chevalley transofmration $f'_!\alpha^*\Rightarrow \beta^*f_!$ is an equivalence.

We will typically assume that $\mathcal Q$ is *local* meaning that a morphism $f:A\to B$ is in $\mathcal Q$ whenever there exists an effective epimorphism $\bigsqcup_{i\in I}B_i woheadrightarrow B$ in $\mathcal B$ such that each of the base change maps $A\times_B B_i\to B_i$ is in $\mathcal Q$.

\nearrow Definition (Presentable \mathcal{B} -category)

A \mathcal{B} -category \mathcal{C} is presentable if it is fiberwise presentable, that is it factors through \Pr^L , and it is \mathcal{B} -cocomplete.

Example

Since $\mathcal B$ is an ∞ -topos, $\Omega_{\mathcal B}$ is fibre-wise presentable and since $\operatorname{ev}_0:\mathcal B^{\Delta^1}\to\mathcal B$ is a *Beck-Chevalley fibration*, as in Hopkins-Lurie, then $\Omega_{\mathcal B}$ is also presentable.

Definition

A ${\mathcal B}$ -functor $F:{\mathcal C} o{\mathcal D}$ between presentable ${\mathcal B}$ -categories preserves (parametrized) colimits if

- For each $B \in \mathcal{B}$, the functor $F(B): \mathcal{C}(B) o \mathcal{D}(B)$ preserves colimits,
- For every morphism $f:A \to B \in \mathcal{B}$, the Beck-Chevalley tranformation $f_! \circ F(A) \Rightarrow F(B) \circ f_!$ is an equivalence. We will write $\operatorname{Fun}^{\operatorname{L}}_{\mathcal{B}}(\mathcal{C},\mathcal{D})$ for the category of colimit-preserving \mathcal{B} -functors.

Definition

Let $\mathrm{Pr}^{\mathrm{L}}(B)$ denote the category of presentable \mathcal{B} -categories with colimit-preserving \mathcal{B} -functors between them.

Ambidexterity

Definition ((Locally) Inductible)

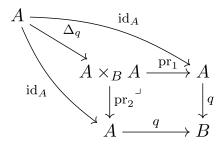
A wide local subcategory $\mathcal{Q} \subseteq \mathcal{B}$ closed under base change is locally inductible if

- every morphism $q:A\to B$ in $\mathcal Q$ locally truncated: there exists a covering $(B_i\to B)_{i\in I}$ (i.e. the induced map $\bigsqcup_{i\in I}B_i\to B$ is an effective epimorphism) such that each base change $q_i\colon B_i\times_B A\to B_i$ is truncated, and
- $\mathcal Q$ is closed under diagonals: every morphism $q:A\to B$ in $\mathcal Q$, the diagonal map $\Delta_q:A\to A\times_B A$ is again in $\mathcal Q$. Furthermore, if every morphism in $\mathcal Q$ is truncated, we'll say $\mathcal Q$ is inductible.

Let Q be a locally inductible subcategory of $\mathcal B$ and $\mathcal C$ be a $\mathcal Q$ -cocomplete $\mathcal B$ -category, then the restriction of $\mathcal C$ to $\mathcal Q^{\mathrm{op}}$ can be unstraightened to a Beck-Chevalley fibration, $\int (\mathcal C|_{\mathcal Q^{\mathrm{op}}}) \to \mathcal Q$. In this setup, we will define what it means for an n-truncated morphism $q \in Q$ to be $\mathcal C$ -ambidextrous, which will allow us to construct a map $\mu_q^{(n)}: \mathrm{id}_{\mathcal C(B)} \to q_! q^*$ exhibiting $q_!$ as right adjoint to q^* .

The induction starts at n=-2, where q is an equivalence and is declared to be $\mathcal C$ -ambidextrous. Since q is an equivalence, the counit map $q_!q^* \to \mathrm{id}_{\mathcal C(B)}$ is an equivalence and $\mu_q^{(-2)}: \mathrm{id}_{\mathcal C(B)} \to q_!q^*$ is defined as the inverse.

Assume now that we have defined what it means for an n-truncated morphism to be $\mathcal C$ -ambidextrous for some $n \geq -2$ with the required transformations $\mu^{(n)}_{(-)}$. In this case, we say that an (n+1)-truncated morphism $q:A \to B$ is weakly $\mathcal C$ -ambidextrous if its diagonal $\Delta_q:A \to A \times_B A$ is $\mathcal C$ -ambidextrous (which is well-defined since Δ_q is n-truncated). Then from the following commutative diagram



Definition (Norm map)

If q:A o B in $\mathcal Q$ is n-truncated and $\mathcal C$ -ambidextrous. Then the norm map $\operatorname{Nm}_q:q!\overset{\sim}{\longrightarrow}q_*$ is defined to be the composition

$$q_! \stackrel{c_q^* \circ q_!}{\longrightarrow} q_* q^* q_! \stackrel{q_* \circ \widetilde{\operatorname{Nm}}_q}{\longrightarrow} q_*.$$

\mathcal{D} Definition (\mathcal{Q} -semiadditive)

For $\mathcal Q$ a locally inductible category, a $\mathcal Q$ -cocomplete $\mathcal B$ -category $\mathcal C$ is called $\mathcal Q$ -semiadditive every truncated morphism $q:A\to B$ in $\mathcal Q$ is $\mathcal C$ -ambidextrous.

ال Remark

Note that even if we cannot talk about an non-truncated $q:A\to B$ in $\mathcal Q$ being $\mathcal C$ -ambidextrous, the local inductibility condition on $\mathcal Q$ allows us to construct a norm map $\operatorname{Nm}_q:q_!\to q_*$ anyways.

To talk about examples that we know, it'll be convenient to introduce a new notion of inductible subcategory in the case of $\mathcal{B}=\mathrm{PShv}(T)$ being a presheaf topos.

Definition (Pre-inductible subcategory)

Given a replete subcategory $\mathcal{Q} \subseteq \mathrm{PShv}(T)$ containing all representables, we say it is pre-inductible if the following holds:

- given a morphism $q:A\to B$ in $\mathrm{PShv}(T)$ with $B\in Q$. Then q lies in $\mathcal Q$ if and only if for each pullback square in $\mathrm{PShv}(T)$ with $t\in T$, the base change q' also lies in $\mathcal Q$.
- $\mathcal Q$ is closed under diagonals.
- Every morphism in ${\mathcal Q}$ with target in T is truncated.

$\operatorname{\mathcal{D}}$ Definition (Locally Inductible Subcategory Generated by $\operatorname{\mathcal{Q}}$)

Let $\mathcal{Q} \subseteq \operatorname{PShv}(T)$ be a pre-inductible subcategory. We say $q:A \to B$ is $\operatorname{\it locally}$ in \mathcal{Q} if for every morphism $B' \to B$ in $\operatorname{PShv}(T)$ with $B' \in \mathcal{Q}$, the base change $A \times_B B' \to B'$ lies in \mathcal{Q} . Since these morphisms are closed under composition and contain all equivalences, they determine a wide subcategory, denoted \mathcal{Q}_{loc} , called the locally inductible subcategory generated by \mathcal{Q} .

Σ Lemma

As a subcategory of $\operatorname{PShv}(T)$, $\mathcal{Q}_{\operatorname{loc}}$ is locally inductible.

\mathcal{P} Definition (\mathcal{Q} -semiadditivity again)

For a pre-inductible subcategory $\mathcal{Q} \subseteq \operatorname{PShv}(T)$, we say a $\operatorname{PShv}(T)$ -category \mathcal{C} is \mathcal{Q} -semiadditive if it is $\mathcal{Q}_{\operatorname{loc}}$ -semiadditive.

Examples

T	Q	Q-semadditivity
*	$\operatorname{Spc}_m (-2 \leq m \leq \infty)$	m-semiadditivity
*	$\operatorname{Spc}_m^{(p)}$ ($-2 \leq m \leq \infty$)	p-typical m -semiadditivity
$\mathrm{Orb}_{\mathrm{G}}$	Fin_G	G-semiadditivity
Glo	$\mathrm{FinGrpd}_{\mathrm{faithful}}$	Equivariant semiadditivity
Glo	FinGrpd	Global semiadditivity

Here, Glo ⊂ FinGrpd is the subcategory of connected finite groupoids.

Supposedly an Example

Given a six functor formalism \mathcal{D} , if we only remember the contravariant functorality, then we have functor $T^{\mathrm{op}} \to \mathrm{Cat}_{\infty}$, whose limit preserving extension is a $\mathrm{PShv}(T)$ -category that is \mathcal{Q} -semiadditive with respect to the preinductible subcategory \mathcal{Q} whose morphisms consist of cohomologically proper and étale morphisms in T.

Another Fun Example

If $\mathcal{T} \subset Glo$ is the full subcategory spanned by groupoids with abelian isotropy, then the $\mathbf{PShv}(\mathcal{T})$ -category of tempered local systems associated to an oriented \mathbf{P} -divisible group is $R(\mathbf{Spc}_{\pi})$ -semiadditive, where here $R: \mathbf{Spc} \to \mathbf{PShv}(T)$ is the fully faithful right adjoint of $\mathbf{ev}_*: \mathbf{PShv}(T) \to \mathbf{Spc}$.

Twisted Ambidexterity

(WIP)

 ${\color{red} \underline{\Sigma}}$ (Classificiation of ${\mathcal C}\text{-linear Functors)}$

Given a ${\it C}$