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Abstract

Random discrete dynamical systems have a wide variety of applications, including complex

systems and genetic regulation. However, many of these dynamical systems are non-

isolated, and current approaches to external influences either use randomness to describe

the presence of an external influence or only consider small external influences. In [1],

Scandolo et al. introduced a theory for working with dynamical systems subject to a

special class of external influences, called covariant influences, and fully characterized

transitions in the deterministic case. In this thesis we provide a number of powerful results

extending this work to the stochastic setting (i.e. for probabilistic transitions): we provide

a complete description of stochastic transitions between systems that only have dynamical

cycles, analyze constraints on transition probabilities, and provide necessary and sufficient

conditions for the existence of influences which induce stochastic transitions between

arbitrary states. The methodology for this work combines the abstract theory of resources

with methods from linear algebra and graph theory to provide a general framework which

applies to dynamical systems independently of their unperturbed evolution.
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1. Introduction

Dynamical systems are ubiquitous throughout the physical sciences, appearing in fields

such as biological modelling [2], complex systems theory in statistical mechanics [3],

physics and chaos theory [4], up to neuroscience [5]. Classically, two central varieties

of dynamical systems have been studied: dynamical systems corresponding to continuous

time evolutions, and dynamical systems corresponding to discrete time evolutions. In this

thesis we restrict to the case of discrete dynamical systems. In either setting, the study of

dynamical systems often uses perturbative methods which allow the systems to be studied

while subjected to sufficiently small external influences. Two major gaps in the current

theory are in the extension from small external influences to all external influences and

frequent absence of frameworks that can answer questions about a large class of systems

without solving their dynamics.

To begin filling this gap, in [1] Scandolo, Gour, and Sanders introduced for the first time

the notion of covariant influences on discrete dynamical systems. Covariant influences

model external effects which act on sufficiently long time scales so that the evolution of

the system is not significantly disturbed. Due to this added structure, we are then able to

consider covariant influences which are beyond the small perturbation regime.

The construction in [1] approaches such long-timescale influences using the powerful

framework of resource theories, originally developed in quantum information theory [6].

Resource theories were originally investigated to understand how objects in quantum

information theory [6], such as quantum entanglement [7], could be understood as a

resource for communication or other quantum protocols. In 2016 Coecke et al. [8] formalized

resource theories, providing a rigorous foundation for studying issues of conversion between

resources using the mathematical field of category theory. Specifically, resource theories
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focus on the study of operations between resources which can be performed at no cost. Due

to this, a primary goal when initially studying any new resource theory is a solution to the

conversion problem, which asks if, given two resources, one can be converted into the other

at no cost. A simple example of a resource theory is given by considering combinations of

molecules as resources, with certain chemical reactions as the method of conversion [9].

In the case of the resource theory constructed in [1], the conversion problem equates to

asking when a fixed state in a dynamical system can be converted into another fixed state

of a possibly different dynamical system via a covariant influence. This problem comes in

two flavours, one where the covariant influence is deterministic and one where the covariant

influence is stochastic. In [1], Scandolo et al. determined a finite set of constraints which

provide necessary and sufficient conditions for the conversion problem in the deterministic

setting. However, Scandolo et al. also showed in [1] that some of the constraints break

down when randomness is introduced into the system in the form of stochasticity of the

covariant influences.

In this thesis we expand on the results in [1] by determining constraints on stochastic

covariant influences that appear in the case of random discrete dynamical systems (RDDS)

with a finite number of states. This analysis is performed using a variety of tools from

the theory of resources, stochastic matrix theory, and graph theory. Resource theories are

used for providing a foundational framework for the work, as well as to produce high-level

results on the interaction between covariant influences and disjoint components of a RDDS.

On the other hand, the main computational work is done using stochastic matrix theory.

This process involves the consideration of a special class of matrices which allow for a clean

description of the interaction between covariant influences and the cycles that appear in

finite dynamical systems. Finally, all results are interpreted using graphical aspects of the
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dynamical systems in order to develop an efficient graphical calculus for practical use.

In Sec. 2 we begin by introducing the appropriate background on finite dynamical systems

which is necessary to understand the work. We also summarize the results of [1] in the

context of the current work, emphasizing graphical intuition. Following this overview, in

Sec. 3 we introduce the details of the primary methods used in this thesis. First, we describe

resource theories, with an emphasis on intuition and analogies to account for the complexity

and abstraction involved in their original definition in [8]. Secondly, we introduce the theory

of circulant matrices and how they naturally appear in the study of covariant influences

on finite dynamical systems. Following these foundations, in Sec. 4 we describe the main

results obtained during the thesis project including a complete description of covariant

influences in cycles, upper bounds on transition probabilities, and the wealth of constraints

that appear when cycle-only dynamics are no longer assumed. In Sec. 5 we conclude with

a summary of the primary results obtained and possible future directions for the work

performed in the thesis.

2. Background

Mathematically, discrete dynamical systems have a simple and elegant formulation: A

discrete dynamical system on a set of states S is a function ϕ : S → S assigning an output

state to every input state [10]. The action of ϕ on states represents an evolution of the

states over a single time step. To obtain the evolution of the system after n times steps, for

n ∈ N = {0, 1, 2, ...}, we simply apply ϕ n times. This setup can also be visualized using

a directed graph, called the dynamical graph of the system, as in Fig. 1, which represents

the system’s state space. A directed graph consists of a pair (V,E) where V is the set of

vertices or nodes and E is the set of edges between vertices with an indicated direction.

For a dynamical graph, nodes represent states in the dynamical system, while directed
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arrows indicate the evolution of the system in a single time step.

Figure 1. Dynamical system (S, ϕ) with two basins, where transient states are drawn

blue and attractor states are drawn red. The dynamics for the “a” basin branches into two

directions at the state a4.

There are a number of important features of dynamical systems which are quickly

illuminated by their dynamical graphs [1]. First, discrete dynamical systems can be

partitioned into basins of attraction which correspond to distinct connected subgraphs

of the system’s dynamical graph. Two such basins are seen for the dynamical graph in

Fig. 1. For finite dynamical systems, each basin contains a cycle called the attractor for

the basin, and within which the dynamics evolve cyclically (e.g. red states in Fig. 1). The

number of states in such a cycle is called the length of the basin it is contained within [1].

We say that states which are not part of a cycle are transient (e.g. blue states in Fig. 1),

noting that all transient states eventually transition into a cycle given a sufficient number

of time steps.

As in [1], the degree to which a state s is transient is measured by two properties, its

transient progeny, d(s), and its ancestry, a0(s). The transient progeny of s gives the number

of time steps required for it to arrive in a cycle, while the ancestry gives the largest integer

k for which an ancestor s′ of s exists such that ϕk(s′) = s. By convention we say that

a0(s) = +∞ if s is a state in a cycle. To describe ancestry graphically we introduce the

notion of a parent of a state. The parent of a state s is a state s′ such that ϕ(s′) = s. We
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say that a state is parentless if it has no parents (e.g. states a5 and a6 in Fig. 1).

In the theory of cellular regulation, finite dynamical systems have been used to model

gene activation and regulation in cells [11]. Explicitly, the states of the dynamical system

in this case are strings of 0s and 1s indicating which genes in a given cell are expressed

or suppressed. In this setting, one of the theoretical predictions is that distinct cycles

represent distinct cell types [11].

Applications of dynamical systems, such as in genetic regulation [11], often need to

consider interactions with the system’s external environment which is not accounted for in

the dynamical systems’ definition. This problem was solved in genetic regulation theory by

introducing randomness into the model through the replacement of states by probability

vectors and the replacement of the deterministic dynamics by stochastic dynamics [12].

This approach has lead to many important results in gene theory, including the “cell types

as cycles” paradigm as well as the fact that the number of cell types follow a power law

with respect to the number of genes [11].

For other non-isolated systems, external effects are considered as small perturbations to

the standard dynamics of the system [13]. In [1], Scandolo et al. introduced the notion of

covariant influences on discrete dynamical influences in order to rigorously study external

effects beyond the small perturbation regime. In the deterministic setting, a covariant

influence on a dynamical system (S, ϕ) is a function F : S → S on the state space

which commutes with the dynamics, ϕ, in the sense that F (ϕ(s)) = ϕ(F (s)) for any state

s ∈ S. Physically, a covariant influence represents an external influence which acts over a

sufficiently long time scale so as not to drastically disturb the system dynamics.

Scandolo et al. formulated this new model for external influences on dynamical systems in
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both deterministic and stochastic settings in [1]. In the case of deterministic influences, they

fully characterized possible state transitions in terms of features of the system’s dynamical

graph. Explicitly, they proved that for states s and s′ of S, where s is in a basin of length

ℓ and s′ is in a basin of length ℓ′, a covariant influence on F which sends s to s′ exists if

and only if the following conditions hold:

a0(ϕ
k(s)) ≤ a0(ϕ

k(s′)) for k = 0, 1, ..., d(s′)− 1, d(s) ≥ d(s′), and ℓ′ divides ℓ (1)

The first two conditions say that s′ and its descendants must be closer to the attractor of

its basin than s, while the last condition states that in the time the input cycle is traversed

once, the output cycle must be traversed a whole number of times.

In the stochastic setting, functions describing covariant influences, F : S → S, become

stochastic matrices acting on probability vectors over the state space S. Here a stochastic

matrix is a matrix with entries between 0 and 1 representing transition probabilities, where

the entries in a given column sum to 1. Physically this says that a deterministic state is sent

to a probability vector of states. Moving forward we write the set of probability vectors

on the state space S using caligraphic notation as S, and we also write the linear map on

probability vectors induced by ϕ by capitalizing Φ : S → S. In this context a stochastic

covariant influence is exactly a stochastic matrix F : S → S such that ΦF = FΦ. We

denote the entries of F by pF (s
′|s) for states s, s′ in the underlying system, indicating that

the entry gives the probability of transitioning from s to s′ under the covariant influence F .

Scandolo et al. showed that for state transitions with stochastic influences the divisibility

condition in Eq. (1) breaks down [1]. However, a treatment that is able to elucidate the

connection between different entries of the stochastic matrix as a result of the covariance

condition was largely missing.
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3. Methods

In order to construct a theory which is fully formal and can be applied to random dynamical

systems in a fashion that is independent of the details of the system, Scandolo et al.

exported the framework of resource theories beyond the domain of quantum information

theory to model their covariant influences [1]. In this section we describe the details of

resource theories in our current work at a high level in order to make the abstract concepts

accessible to non-experts. We also present more concrete matrix algebra methods that are

essential to understanding the stochastic covariant influences under consideration.

3.1. Resource Theories

Resource theories, which were first studied in quantum information theory [6], were

expanded on by Coecke et al. [8] into a fully formal mathematical theory for studying

the conversion between resources at no cost. A resource theory consists of two main pieces

of data: an ambient process theory which models physical systems and physical processes

that occur on them, and the specification of a collection of processes which occur at no cost,

called free processes. In general processes between physical systems can occur sequentially

or in parallel, and the same is true of processes which occur at no cost. In addition to

physical systems and processes, we consider a more theoretical object which is the trivial

system. The importance of the trivial system comes from the fact that processes from the

trivial system into any other physical system correspond to preparing a state of the other

system.

We can then consider a resource theory as a smaller process theory where all processes

can be performed at no cost. The resources of a given theory are given by states of the

physical systems being considered. The primary goal for any resource theory is then a

solution to the conversion problem, which asks when given resources A and B whether a
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free process from the system containing A to the system containing B exists which converts

A into B. Intuitively, an answer to this question signifies whether A is a “more valuable”

resource than B. A simple example of a resource theory is given by considering collections

of molecules as physical systems with chemical reactions being the processes [9]. The

free processes can then be those chemical reactions which occur at room temperature and

standard pressure without the need for other catalysts.

In [1], Scandolo et al. defined a resource theory of random discrete dynamical systems

and covariant influences. The ambient process theory consists of RDDSs with all possible

stochastic influences between them. We write an influence between RDDSs (S, ϕ) and

(T, ψ) by F : S → T , where S and T are the stochastic counterparts of S and T , as in

Sec. 2. The processes which occur at no cost for the theory are then those processes F

which are also covariant influences, so FΦ = ΨF , for Φ and Ψ the matrices associated with

ϕ and ψ.

3.2. Circulant Matrices

In this section we introduce a class of matrices which describe the transition blocks in a

covariant influence between systems with no transient states. These are circulant matrices,

which have a natural cyclic definition reflecting the cyclicity of attractors in finite dynamical

systems.

An m × n circulant matrix A consists of a first row (α1 · · · αn), with each successive
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row being a cyclic shift of the row above by one step to the left. Explicitly we can write

A =



α1 α2 · · · αn

α2 α3 · · · α1

...
...

. . .
...

αm αm+1 · · · αm+n−1


, (2)

where we compute the indices modulo n in the last row, and where we require that the

first row is a shift to the left of the last row, so (αm+1 · · · αm+n) = (α1 · · · αn). Matrices

describing permutations of states when n = m are an important special case of these

circulant matrices.

During the execution of the thesis it was determined that these circulant matrices form

a subspace of m × n matrices of dimension given by the greatest common divisor of m

and n, gcd(m,n). A basis of this subspace is given by C
(0)
m,n, ..., C

(gcd(m,n)−1)
m,n , which are

generalizations of permutation matrices. Explicitly, C
(i)
m,n can be described as the circulant

matrix with first row having 1s in the entries i+1, i+gcd(m,n)+1, ..., i+(ℓ−1) gcd(m,n)+1,

where ℓ is the integer for which ℓ gcd(m,n) = n. In the case of m = 2 and n = 4, such a

basis is of the following form:


1 0 1 0

0 1 0 1

 ,

0 1 0 1

1 0 1 0


 .

This simple class of permutation-like matrices allow for a simple and elegant description

of covariant influences on systems with no transient states.
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4. Results and Discussion

The use of resource theories as an underlying framework allows us to develop a general

theory of random discrete dynamical systems (RDDS) subject to long-timescale influences.

We will begin by demonstrating how resource theories allow us to simplify the study of

these influences by inductively constructing complicated systems with a large number

of basins together from far simpler systems. This result will then allow us to develop

a full characterization of covariant influences for cycle-only RDDSs before introducing

transience.

4.1. Constructing Dynamical Systems

In practice RDDSs can consist of an extremely large number of basins of attraction, each

with numerous states. However, as we show in this section, the covariance assumption

guarantees that covariant influences are well-behaved with respect to basin-to-basin

interactions. Explicitly, the transition probabilities for a covariant influence can be

partitioned into blocks which represent transitions between two fixed basins at a time,

greatly simplifying the problem of classifying these influences.

The primary fact that this result relies on is that a covariant influence out of a

dynamical system is fully determined by specifying covariant influences out of each basin

of attraction. Indeed, suppose we wanted to construct a stochastic covariant influence

F : (S,Φ) → (T ,Ψ) between underlying systems (S, ϕ) and (T, ψ).
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Figure 2. Diagram illustrating the construction a larger dynamical system from two

disjoint dynamical systems.

Since (S, ϕ) is finite, it can be partitioned into a finite number of basins of attraction,

S1, ..., Sn, which are also the connected components for the dynamical graph of (S, ϕ).

Note that we can restrict the dynamics to these subsystems to get dynamical systems

(S1, ϕ1), ..., (Sn, ϕn). We then have that (S, ϕ) is obtained by collecting these disjoint

subsystems as in Fig. 2.

Then to specify F it is sufficient to give stochastic covariant influences Fi : (Si,Φi) →

(T ,Ψ) for each i = 1, 2, ..., n. Indeed, as a matrix F can be built out of the Fi by using

our ordering on the basins of attraction in (S, ϕ), and writing F in block matrix form

F =

(
F1 F2 · · · Fn

)
. (3)

Since each Fi is stochastic so is F , as each column is a column of some Fi and hence a

probability vector. On the other hand, the reason that F is covariant is due to the fact
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that we can write Φ in block diagonal form in terms of the Φi as

Φ =



Φ1 0 · · · 0

0 Φ2 · · · 0

...
...

. . .
...

0 0 · · · Φn


.

Using block multiplication of matrices and the covariance of the Fi this implies that

FΦ =

(
F1Φ1 · · · FnΦn

)
=

(
ΨF1 · · · ΨFn

)
= ΨF.

This result provides our first simplification and consider influences F : (S,Φ) → (T ,Ψ),

where the underlying domain system (S, ϕ) is fully connected. For the next simplification

F =



F1

F2

...

Fm


(4)

we can partition (T, ψ) as well into basins (T1, ψ1), ..., (Tm, ψm).

Again we can stratify the matrix for F into blocks representing

probabilities of transitioning into different components of (T, ψ):

A similar block multiplication argument to that given above

implies that each Fi is covariant, for i = 1, 2, ...,m. However,

it need not be the case that any Fi is stochastic, since a column from Fi is only a portion

of the full column in F .

As we will show below for attractor systems, and which we have proven for RDDSs more

generally, the columns in a given block Fi all sum to the same value and so are uniform.

This implies that although each Fi need not be stochastic, it can be made stochastic after

scaling by a positive number. In other words, after possible scaling, F is fully determined

by stochastic covariant influence Fi : (S,Φ) → (Ti,Ψi) between single basins for each

i = 1, 2, ...,m. We will leverage this result through the remainder of the discussion.
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First we will expand on what the covariance condition for our influences mean in a

general context which we will specialize when looking at attractor dynamics. Consider

such a covariant influence F : (S,Φ) → (T ,Ψ). Fix a state s ∈ S in the underlying RDDS

as well as an ordering of the states in S so we can write F as a matrix. Let es ∈ S denote

the probability vector with 1 in the position for the state s and 0s elsewhere. Then the

covariance condition says that

Feϕ(s) = FΦes = ΨFes.

For any fixed state t ∈ T in the underlying RDDS of (T ,Ψ), this equality says that

pF (t|ϕ(s)) =
∑

t′∈ψ−1({t})

pF (t
′|s), (5)

where ψ−1({t}) is the collection of states in T which have t as a direct descendant (i.e.

t′ ∈ ψ−1({t}) if and only if ψ(t′) = t). Note that if ψ−1({t}) is empty, for example if t is

parentless, then the sum on the right hand side of Eq. (5) is 0. This case can be seen as a

special case of the ancestry condition from Eq. (1) as it states that the successor of a state

s cannot transition to a state with no parents. Running this argument inductively using

Eq. (5) we can re-derive the full ancestry condition for stochastic covariant influences.

4.2. Attractor Dynamics

The results in Sec. 4.1 allow us to greatly simplify our next steps by considering covariant

influences between systems with one basin of attraction each.

Since we are currently considering cycle-only dynamics, every state t in T has exactly

one parent. Thus, if t′ is this unique parent of t, so ψ(t′) = t, then Eq. (5) transforms into

pF (ψ(t
′)|ϕ(s)) = pF (t

′|s). (6)
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Applying this result inductively allows us to observe that pF (t
′|s) = pF (ψ

k(t′)|ϕk(s))

for any natural number k ≥ 0. Physically these observations imply that the covariance

constraint forces transition probabilities to respect time evolutions for cycle-only dynamics

in the sense that probabilities are preserved by evolving both systems simultaneously in

time.

The preservation of probabilities under time evolution in Eq. (6) suggests a connection

between our covariant influences and the circulant matrices of Sec. 3.2. To this effect, we

can expand F as in Eq. (4) and consider the covariant influence Fi : (S,Φ) → (Ti,Ψi).

Since (Ti, ψi) consists of a single cycle we can order the states in Ti as t1, ..., tm such that

ψ(tj) = tj+1 for each j = 1, 2, ...,m, where the index is computed modulo m so that

ψ(tm) = tm+1 = t1. With this ordering fixed, the constraint in Eq. (6) says exactly that as

we go down the rows in Fi. the terms cycle to the left, as in Eq. (2).

These observations tell us that the transition blocks in F between individual cycles, Fi,

are exactly circulant matrices corresponding to the lengths of the cycles Ti in T . Using the

basis description for circulant matrices in Sec. 3.2, we can give an explicit expression for

the possible covariant influences Fi. In particular, if we fix any state t in Ti and any state

s in S, then after ordering the rest of the states in terms of the dynamics on S and T we

can describe Fi by

Fi =

gcd(m,n)−1∑
k=0

pF (t|ϕk(s))C(k)
m,n =



pF (t|s) pF (t|ϕ(s)) · · · pF (t|ϕgcd(m,n)−1(s))

pF (t|ϕgcd(m,n)−1(s)) pF (t|s) · · · pF (t|ϕgcd(m,n)−2(s))

...
...

. . .
...

pF (t|ϕ(s)) pF (t|ϕ2(s)) · · · pF (t|s)


.

(7)
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The formula in Eq. (7) can be hard to interpret at first glance, but has an incredibly

simple and powerful consequence. In particular, from the cyclicity of the entries in Fi,

it can be seen that each column is a cyclic permutation of the previous column. This

immediately shows that the sum of probabilities in any two columns are equal, allowing us

to perform the simplifications described at the end of Sec. 4.1.

In addition to this simplification result, looking at the repetition of entries in any given

column we can see that the number of free probabilities in the block is exactly gcd(m,n),

and each probability occurs exactly m
gcd(m,n)

times. Since Fi is a block in the stochastic

matrix F , the entries in any one of its columns must sum to at most one. Together with

the repetition of probabilities this gives a strict bound on our probability pF (t|s):

pF (t|s) ≤
1

m/ gcd(m,n)
=

gcd(m,n)

m
. (8)

To illuminate how we can interpret the bound in Eq. (8), consider the following collection

of three disjoint cycles in Fig. 3 with individual covariant influences between them.

Figure 3. Diagram representing covariant influences between cycles of relatively prime

lengths, 2 and 3, and cycles of dividing lengths, 2 and 4.

Using our previous classification, the covariant influences Fcb and Fbc consist of two free

transition probabilities each, given by p1 := p(c1|b1), p2 := p(c1|b2) and q1 := p(b1|c1),

q2 := p(b1|c2), respectively. On the other hand, Fca has only one free transition probability,
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p := p(c1|a1). In general, if Fca is part of a larger stochastic covariant influence, then p is

bounded by 1/4 since the c cycle is of length 4. On the other hand, if Fca is a standalone

influence, then the stochasticity condition forces p = 1/4. In summary, when dealing with

each of these influences as standalone stochastic matrices, we can write

Fcb =



p1 p2

p2 p1

p1 p2

p2 p1


, Fbc =

q1 q2 q1 q2

q2 q1 q2 q1

 , Fca =



1/4 1/4 1/4

1/4 1/4 1/4

1/4 1/4 1/4

1/4 1/4 1/4


,

where q1 and q2 can take on any value between 0 and 1, as long as q1 + q2 = 1, while p1

and p2 can only be at most 1/2, as described in Eq. 8.

These computations show that the bound in Eq. (8) provides a kind of stochastic version

of the divisibility rule in Eq. (1). Indeed, if we are considering two cyclic discrete dynamical

systems, one of length ℓ1 and the other of length ℓ2, then if ℓ2 divides ℓ1 Eq. (1) guarantees

that we have a deterministic covariant influence from the ℓ1 cycle to the ℓ2 cycle. In the

stochastic setting this implies that we can have any transition probabilities between 0 and

1. But if ℓ2 does not divide ℓ1 then although a stochastic covariant influence from the

ℓ1 cycle to the ℓ2 cycle exists, its probabilities are strictly less than 1. If we go to the

extreme where ℓ1 and ℓ2 only have 1 as a common divisor, then all transition probabilities

are identical, and so they are maximally constrained.

4.3. Transient Dynamics

The next step to understanding covariant influences is to introduce transient states, or in

other words branches as seen in blue in Fig. 1. Transient states introduce non-reversibility

to our dynamical systems, and hence greatly increase the complexity of studying covariant
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influences that can act on them. Going back to the entry-wise covariance condition in

Eq (5), observe that ψ−1({t}) is exactly the set P1(t) of parents states of t.

The reason for this change in perspective is the graphical intuition it provides and the

ease of generalization. In particular, if Pk(t) for k ≥ 1 denotes the set of kth order ancestors

of t, i.e. all states t′ such that ψk(t′) = t, then we can provide a simple description of the

formula obtained by applying Eq. (5) inductively. However, to perform this generalization

we first must fix a chain of states s, s1, ..., sk such that ϕi(sk) = sk−i for i = 0, 1, ..., k,

where s0 := s. This chain can be thought of as a fixed k-step history of the state s. With

this chain and notation fixed, the general form of Eq. (5) becomes

pF (t|s) =
∑

t′∈Pk(t)

pF (t
′|sk). (9)

This classification provides an elegant way of proving the ancestry and transient progeny

constraints in Eq. (1) for the stochastic setting. Indeed, for ancestry, if t ∈ T and s ∈ S

are states such that a0(ψ
k(t)) < a0(ϕ

k(s)), then we have a a0(ψ
k(t)) + 1-step time history

of ϕk(s): ϕk(s), s1, ..., sa0(ψk(t))+1. With this time history we can use Eq. (9) to write

pF (ψ
k(t)|ϕk(s)) =

∑
t′∈P

a0(ψ
k(t))+1

(ψk(t))

pF (t
′|sa0(ψk(t))+1).

But a0(ψ
k(t)) is the distance to the farthest ancestor of ψk(t), so Pa0(ψk(t))+1(ψ

k(t))

must be empty, implying that the sum and hence pF (ψ
k(t)|ϕk(s)) is zero. Since we

can use Eq. 9 to expand pF (ψ
k(t)|ϕk(s)) in terms of k-th ancestors, which includes

pF (t|s), the fact that pF (ψ
k(t)|ϕk(s)) = 0 implies that we must also have pF (t|s) = 0.

The transient progeny constraint is then a simple consequence of the ancestry one since

d(s) ≥ d(t) is equivalent to requiring that ϕd(s)(t) is an attractor state, or in other words

a0(ϕ
d(s)(t)) = +∞. But ϕd(s)(s) is always an attractor state by definition of the transient
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progeny, so a0(ϕ
d(s)(t)) = +∞ is equivalent to a0(ϕ

d(s)(s)) ≤ a0(ϕ
d(s)(t)).

The main contrast between the deterministic and stochastic settings is that these two

constraints alone are actually not only necessary, but also sufficient for the existence

of a stochastic covariant influence that has a non-zero probability of transitioning

Figure 4. Diagram showing

chain with a bouquet of parent-

less states on the end.

between two states. The full proof of this claim is

lengthy, but we can give a sketch of the argument here.

The basic idea is to prove the claim inductively, where

the induction is performed on the size of the transient

branches in a dynamical system. For the first step of the

proof we use the fact that we can always have a non-

zero transition probability into states that live in cycles.

This observation is obtained by iterating the dynamics a

sufficient number of times so that all states in the domain lie in a cycle, and then using

the theory for cycle-only systems developed using circulant matrices in Sec. 4.2.

Figure 5. Transient tree

obtained by adding bouquets to

the parentless states in Fig. 4.

After this initial step, we show that we can always

reach a state in a transient chain out of a parentless

state. With this step in hand the next is a bouquet

procedure, depicted in Fig. 4, where we flower out the

parentless state at the end of a chain that otherwise has

no branches. Finally, to complete the argument we need

to be able to consider a transient tree with an arbitrary

number branches. The key observation is that such a tree

can be built inductively by adding bouquets on parentless states. For example, if we add

bouquets on the parentless states in Fig. 4 we can construct the tree seen in Fig. 5. This
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approach allows us to construct our desired covariant influence.

5. Conclusion

Throughout this thesis we have constructed a general treatment for working with random

discrete dynamical systems (RDDS) subject to external influences that act on extended

time scales. We introduced and leveraged the resource theory of RDDSs developed

by Scandolo et al. in [1] to encode long time scale external influences mathematically

as covariant influences, and determine what structure they take. In this analysis we

first used the theory of resources as a tool for constructing dynamical systems. In the

process we demonstrated that an arbitrary stochastic covariant influence can be partitioned

into covariant influences between individual basins of attraction. With this foundation

developed, we were able to provide a complete description of covariant influences between

systems without transient states. Unlike in the deterministic case in [1], where a certain

divisibility condition was required to ensure the existence of covariant influences between

different systems, we showed that stochastic covariant influences always exist between such

systems. However, we also showed that transition probabilities are constrained when the

divisibility rule from the deterministic setting in [1] is violated. Finally, we added transience

and showed that the theory of stochastic influences gives an elegant form to the necessary

and sufficient conditions for having probabilistic transitions between states. Explicitly,

using an inductive argument on the structure of transient branches in our dynamical graphs,

we were able to show that the ancestry and transient progeny constraints in Eq. (1) are

sufficient for the existence of a non-zero transition probability between two states.

Journal Style: This thesis was typeset using IOPart in the style of the Journal of Physics

A: Mathematical and Theoretical including citations, given that this journal is a suitable

venue for the publication of these results.

20



J. Phys. A: Math. Theor. (2024) E Ea Thompson

References

[1] Scandolo C M, Gour G and Sanders B C 2023 Covariant influences for finite discrete dynamical

systems Phys. Rev. E. 107(1) 014203

[2] Barbuti R, Gori R, Milazzo P and Nasti L 2020 A survey of gene regulatory networks modelling

methods: from differential equations, to Boolean and qualitative bioinspired models J. Membr.

Comput. 2 207–226

[3] Thurner S, Hanel R and Klimek P 2018 Introduction to the Theory of Complex Systems (Oxford

University Press)

[4] Strogatz S H 2014 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry

and Engineering 2nd ed (Westview Press)

[5] Izhikevich E M 2007 Dynamical systems in neuroscience: the geometry of excitability and bursting

(MIT Press)

[6] Chitambar E and Gour G 2019 Quantum resource theories Rev. Mod. Phys. 91(2) 025001

[7] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Quantum entanglement Rev. Mod.

Phys. 81(2) 865–942

[8] Coecke B, Fritz T and Spekkens R W 2016 A mathematical theory of resources Inf. Comput. 250

59–86

[9] Fritz T 2017 Resource convertibility and ordered commutative monoids Math. Struct. Comput. Sci.

27 850–938

[10] Holmgren R 2012 A First Course in Discrete Dynamical Systems Universitext (Springer New York)

[11] Bornholdt S and Kauffman S 2019 Ensembles, dynamics, and cell types: Revisiting the statistical

mechanics perspective on cellular regulation J. Theor. Biol. 467 15–22

[12] Kauffman S 1969 Homeostasis and differentiation in random genetic control networks Nature 224

177–178

[13] Thirring W and Harrell E 2003 Classical Mathematical Physics: Dynamical Systems and Field

Theories (Springer New York)

21

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.107.014203
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.107.014203
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.107.014203
https://journals.scholarsportal.info/details/25238906/v02i0003/207_asogrntbaqbm.xml
https://journals.scholarsportal.info/details/25238906/v02i0003/207_asogrntbaqbm.xml
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.91.025001
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.91.025001
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.91.025001
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.865
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.865
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.865
https://www.sciencedirect.com/science/article/pii/S0890540116000353
https://www.sciencedirect.com/science/article/pii/S0890540116000353
https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/resource-convertibility-and-ordered-commutative-monoids/C0D57AE7683BAA911F3F270ABD82A4E9
https://www.cambridge.org/core/journals/mathematical--structures--in--computer--science/article/resource--convertibility--and--ordered--commutative--monoids/C0D57AE7683BAA911F3F270ABD82A4E9
https://pubmed.ncbi.nlm.nih.gov/30711453/
https://pubmed.ncbi.nlm.nih.gov/30711453/
https://www.nature.com/articles/224177a0
https://www.nature.com/articles/224177a0

	Introduction
	Background
	Methods
	Resource Theories
	Circulant Matrices

	Results and Discussion
	Constructing Dynamical Systems
	Attractor Dynamics
	Transient Dynamics

	Conclusion

