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Motivation: The Langlands Program

(a) Algebraic Number Theory (b) Algebraic
Geometry

(c)
Representation
Theory

Figure: The Langlands Program: bridging fields
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Vogan Variety: Preliminaries

Preliminary Data:

A suitably “nice” matrix group G over a number system F

A dual matrix group Ĝ over C
An infinitesimal parameter λ ∈ Ĝ

Infinitesimal Parameter: Informal

An infinitesimal parameter of G(F ) is a diagonal matrix λ ∈ Ĝ of the form

λ = diag(qe0 , ..., qen)

where e0 ≥ e1 ≥ · · · ≥ en ∈ 1
2Z, and q ∈ N is related to the underlying

number system F .
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Vogan Variety: Geometry

Let λ = diag(qe0 , ..., qen) ∈ Ĝ be an infinitesimal for G(F ).

Vogan Variety

The Vogan Variety associated with λ is

Vλ := {M ∈ Lie Ĝ : λMλ−1 = qM}

Toy Example (Geometry): Take G(F ) = GL2(F ), Ĝ = GL2(C), and
λ = diag(q1/2, q−1/2). Then

Vλ =

{(
0 x
0 0

)
∈ M2,2(C) : x ∈ C

}
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Vλ := {M ∈ Lie Ĝ : λMλ−1 = qM}

Toy Example (Geometry): Take G(F ) = GL2(F ), Ĝ = GL2(C), and
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Vogan Variety: Action

Group Action

Vλ has a natural group acting on it given by

Hλ = {g ∈ Ĝ : λgλ−1 = g}

where g ·M = gMg−1 for all g ∈ Hλ,M ∈ Vλ.

Toy Example (Action): Take G(F ) = GL2(F ), Ĝ = GL2(C), and
λ = diag(q1/2, q−1/2). Then

Hλ =

{(
t1 0
0 t2

)
∈ GL2(C) : t1, t2 ∈ C×

}
and the action is (

t1 0
0 t2

)
·
(
0 x
0 0

)
=

(
0 t1x/t2
0 0

)
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Vogan Variety: Orbits

Orbit

An orbit of a point x ∈ Vλ is the space

Hλ · x = {gxg−1 ∈ Vλ : g ∈ Hλ}

Toy Example (Orbits): Take G(F ) = GL2(F ), Ĝ = GL2(C), and
λ = diag(q1/2, q−1/2). Then Vλ has two orbits:

C0 =

{(
0 0
0 0

)}
, C1 =

{(
0 x
0 0

)
∈ M2,2(C) : x ∈ C×

}
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Local systems

Figure: Local system on a Vogan

Attached to a local system LC on an orbit C is an object IC(C,LC)
on the whole Vogan variety.

Thompson (UofC) Stalks E.T. 2023 7 / 18



Local systems

Figure: Local system on a Vogan

Attached to a local system LC on an orbit C is an object IC(C,LC)
on the whole Vogan variety.

Thompson (UofC) Stalks E.T. 2023 7 / 18



GL5(F ) Case

Consider the infinitesimal parameter λ = diag(q1, q0, q0, q0, q−1).

The Vogan is

Vλ =




0 x1 x2 x3 0
0 0 0 0 y1
0 0 0 0 y2
0 0 0 0 y3
0 0 0 0 0

 : xi, yi ∈ C


∼= M1,3(C)×M3,1(C)

∼= Hom(E1, Eq1)× Hom(Eq−1 , E1)
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GL5(F ) Case

Our group is Hλ
∼= GL1(C)×GL3(C)×GL1(C)

(g0, g1, g2) ∈ Hλ acts on
(X1,0, X2,1) ∈ Vλ

∼= Hom(E1, Eq1)× Hom(Eq−1 , E1) by

(g0, g1, g2) · (X1,0, X2,1) ∼= (g0X1,0g
−1
1 , g1X2,1g

−1
2 )

We have five orbits:
Ct

Cm

Cl Cr

C0
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GL5(F ) Case

The IC’s on Vλ are

{IC(C0,1C0), IC(Cl,1Cl
), IC(Cr,1Cr), IC(Cm,1Cm), IC(Ct,1Ct)}

Structure Table (C0) (Cl) (Cr) (Cm) (Ct)

IC(C0,1C0) C[0] 0 0 0 0
IC(Cl,1Cl

) C[3] C[3] 0 0 0
IC(Cr,1Cr) C[3] 0 C[3] 0 0
IC(Cm,1Cm) ? ? ? C[5] 0
IC(Ct,1Ct) C[6] C[6] C[6] C[6] C[6]
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Fixing Singularities: Resolutions

We wish to find a smooth space C̃m with a natural “nice” projection

π : C̃m → Cm

Figure: Resolution of Singularities through blow-up
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Special Orthogonal Group and Symplectic Group

Special Orthogonal Group

For n ∈ N, the special orthogonal group SO(n) can be realized as

SO(n) = {O ∈ GLn : OTO = In, det(O) = 1}

Symplectic group

For n ∈ N, the symplectic group Sp2n can be realized as

Sp2n = {M ∈ GL2n : MTΩM = Ω}

where most commonly Ω =

(
0 In

−In 0

)

̂SO2n+1(F ) = Sp2n(C) and ̂Sp2n(F ) = SO2n+1(C)
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SO2n+1(C) Steinberg

Let λ = diag(qn, qn−1, ..., q−n) ∈ SO2n+1(C)
The Vogan variety is

V SO
λ =





0 x1 0 · · · 0 0
0 0 x2 · · · 0 0
...

...
. . .

. . .
...

...
...

...
. . .

. . . −x2 0
0 0 · · · · · · 0 −x1
0 0 · · · · · · 0 0


∈ M2n+1(C) : x1, ..., xn ∈ C


The group acting on V SO

λ is
HSO

λ = {diag(t1, ..., tn, 1, 1/tn, ..., 1/t1) : t1, ..., tn ∈ C×}
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Sp2n(C) Determinantal

Let λ = diag(q1/2, ..., q1/2, q−1/2, ..., q−1/2) ∈ Sp2n(C) each occurring
n times.

The Vogan variety is

V Sp
λ =

{(
0 A
0 0

)
∈ M2n(C) : A ∈ Mn(C), A = AT

}
The group acting on V Sp

λ is

HSp
λ =

{(
X 0
0 (XT )−1

)
∈ GL2n(C) : X ∈ GLn(C)

}
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Conclusions and Future Work

Results:

1 Symbolically represent Vogan varieties

2 Compute their orbit structure

3 Algorithm for resolving orbits in the case of GLn

4 Extend the algorithms to SO(2n+ 1) and Sp2n groups

Future Work:

1 Continue expanding algorithms for computing the structure of IC’s for
GLn, SO(n), Sp2n, and other classical groups

2 Use the tools and algorithms developed to study IC’s for computing
quantities such as the Ev functor
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Questions?

Thank you for your time!

Any questions?

Figure: Local Systems
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